Skip to main content
Log in

Electrocatalytic oxidation of the reduced nicotinamide adenine dinucleotide at carbon ionic liquid electrode modified with polythionine/multi-walled carbon nanotubes composite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A carbon ionic liquid electrode (CILE) was modified with a polythionine (PTh)/multi-walled carbon nanotubes (MWCNTs) composite and used for the detection of reduced nicotinamide adenine dinucleotide (NADH). The electrode was prepared by electrochemical polymerization of thionine on the MWCNTs in neutral medium. Cyclic voltammetry indicated that the electrode was capable of mediating the oxidation of NADH at an overpotential as low as 0.03 V. Amperometric experiments showed that a sensitive and stable response towards NADH is obtained within 5 s. The linear range for the determination of NADH is from 0.8 μmol L−1 to 422 μmol L−1, with a detection limit of 0.26 μmol L−1 (S/N = 3). The wide linear range, lower detection limit and faster response towards NADH suggests that the new method potentially is useful for developing NAD+-dependent enzyme-based biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hummel W (1999) Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol 17:487

    Article  CAS  Google Scholar 

  2. Moiroux J, Elving PJ (1978) Effects of adsorption electrode material and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes. Anal Chem 50:1056

    Article  CAS  Google Scholar 

  3. Valentini F, Salis A, Curulli A, Palleschi G (2004) Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotubule modified glassy carbon electrodes. Anal Chem 76:3244

    Article  CAS  Google Scholar 

  4. Gligor D, Dilgin Y, Popescu IC, Gorton L (2009) Poly-phenothiazine derivative-modified glassy carbon electrode for NADH electrocatalytic oxidation. Electrochim Acta 54:3124

    Article  CAS  Google Scholar 

  5. Liu AH, Watanabe T, Honma I, Wang J, Zhou HS (2006) Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor. Biosens Bioelectron 22:694

    Article  CAS  Google Scholar 

  6. Sha YF, Gao Q, Qi B, Yang XR (2004) Electropolymerization of Azure B on a screen-printed carbon electrode and its application to the determination of NADH in a flow injection analysis system. Microchim Acta 148:335

    Article  CAS  Google Scholar 

  7. Salimi A, Hallaj R, Ghadermazi M (2005) Modification of carbon ceramic electrode prepared with sol-gel technique by a thin film of chlorogenic acid: application to amperometric detection of NADH. Talanta 65:888

    Article  CAS  Google Scholar 

  8. Zhai XR, Wei WZ, Zeng JX, Gong SG, Yin J (2006) Layer-by-Layer assembled film based on chitosan/carbon nanotubes, and its application to electrocatalytic oxidation of NADH. Microchim Acta 154:315

    Article  CAS  Google Scholar 

  9. Deng CY, Chen JH, Chen XL, Xiao CH, Nie Z, Yao SZ (2008) Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH. Electrochem Commun 10:907

    Article  CAS  Google Scholar 

  10. Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75:2075

    Article  CAS  Google Scholar 

  11. Yan Y, Zhang M, Gong K, Su L, Guo Z, Mao L (2005) Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem Mater 17:3457

    Article  CAS  Google Scholar 

  12. Lawrence NS, Wang J (2006) Chemical adsorption of phenothiazine dyes onto carbon nanotubes: toward the low potential detection of NADH. Electrochem Commun 8:71

    Article  CAS  Google Scholar 

  13. Zhu LD, Yang RL, Jiang XY, Yang DX (2009) Amperometric determination of NADH at a Nile blue/ordered mesoporous carbon composite electrode. Electrochem Commun 11:530

    Article  CAS  Google Scholar 

  14. Zhang M, Gorski W (2005) Electrochemical sensing based on redox mediation at carbon nanotubes. Anal Chem 77:3960

    Article  CAS  Google Scholar 

  15. Zhu LD, Zhai JL, Yang RL, Tian CY, Guo LP (2007) Electrocatalytic oxidation of NADH with meldola’s blue functionalized carbon nanotubes electrodes. Biosens Bioelectron 22:2768

    Article  CAS  Google Scholar 

  16. de Lucca AR, de Antonio S, Santos PAC, Kubota LT (2002) Electrochemical behavior and electrocatalytic study of the methylene green coated on modified silica gel. J Colloid Interface Sci 254:113

    Article  Google Scholar 

  17. Gao Q, Cui XQ, Yang F, Ma Y, Yang XY (2003) Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosens Bioelectron 19:277

    Article  CAS  Google Scholar 

  18. Ferreira V, Tenreiro A, Abrantes LM (2006) Electrochemical, microgravimetric and AFM studies of polythionine films: application as new support for the immobilisation of nucleotides. Sens Actuators B 119:632

    Article  Google Scholar 

  19. Li QW, Zhang J, Yan H, He MS, Liu ZF (2004) Thionine-mediated chemistry of carbon nanotubes. Carbon 42:287

    Article  CAS  Google Scholar 

  20. Schlereth DD, Karyakin AA (1995) Electropolymerization of phenoxazine and phenazine derivatives: characterization of the polymers by UV-visible difference spectroelectrochemistry and fourier transform IR spectroscopy. J Electroanal Chem 395:221

    Article  Google Scholar 

  21. Anderson JL, Armstrong DW, Wei GT (2006) Ionic liquids in analytical chemistry. Anal Chem 78:2892

    Article  Google Scholar 

  22. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem 359:224

    Article  CAS  Google Scholar 

  23. Sun W, Li YZ, Duan YY, Jiao K (2008) Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination. Biosens Bioelectron 24:988

    Article  CAS  Google Scholar 

  24. Maleki N, Safavi A, Tajabadi F (2006) High-Performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820

    Article  CAS  Google Scholar 

  25. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232

    Article  CAS  Google Scholar 

  26. Kim B, Sigmund WM (2004) Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir 20:8239

    Article  CAS  Google Scholar 

  27. Yang R, Ruan CM, Dai WL, Deng JQ, Kong JL (1998) Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine). Electrochim Acta 44:1585

    Article  Google Scholar 

  28. Jeykumari DRS, Ramaprabhu S, Narayanan SS (2007) A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide. Carbon 45:1340

    Article  CAS  Google Scholar 

  29. Sun W, Li YZ, Duan YY, Jiao K (2009) Direct electrochemistry of guanosine on multi-walled carbon nanotubes modified carbon ionic liquid electrode. Electrochim Acta 54:4105

    Article  CAS  Google Scholar 

  30. Bard AJ, Faulkner LR (2002) Electrochemical methods-fundamentals and applications. Wiley, Beijing, p 186

    Google Scholar 

  31. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  32. Torstensson A, Gorton L (1981) Catalytic oxidation of NADH by surface-modified graphite electrodes. J Electroanal Chem 130:199

    CAS  Google Scholar 

  33. Ge B, Tan TM, Xie QJ, Ma M, Yao SZ (2009) Preparation of chitosan–dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH. Sens Actuators B 137:547

    Article  Google Scholar 

  34. Wang Q, Tang H, Xie QJ, Tan L, Zhang YY, Li BM, Yao SZ (2007) Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochim Acta 52:6630

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Outstanding Youth Foundations of China, National Science Foundation of China (50725825) and Special Research Found for the Doctoral Program of Higher Education of China (20060532006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanzhi Wei or Shenglian Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mai, N., Liu, X., Zeng, X. et al. Electrocatalytic oxidation of the reduced nicotinamide adenine dinucleotide at carbon ionic liquid electrode modified with polythionine/multi-walled carbon nanotubes composite. Microchim Acta 168, 215–220 (2010). https://doi.org/10.1007/s00604-009-0285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0285-5

Keywords

Navigation