Skip to main content
Log in

Acetylene black-ionic liquids composite electrode: a novel platform for electrochemical sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical sensing platform was developed that is based on the modification of a glassy carbon electrode with acetylene black and ionic liquids. The resulting electrode exhibited excellent electrocatalytic activity towards trifluralin in showing markedly increased redox peak currents. The experimental parameters affecting the response to trifluralin were optimized. Under optimal conditions, a linear response was obtained in the range from 80 nM to 12 µM of trifluralin (R = 0.9994). The detection limit is 10 nM (at S/N = 3) after open-circuit accumulation for 120 s. The method was successfully applied to determine trifluralin in soil samples. Features such as a large electroactive area, fast electron transfer and low background current make this composite electrode a promising platform for fabricating reliable electrochemical sensors for various species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AB:

Acetylene black

ILs:

ionic liquids

MWCNTs:

multi-wall carbon nanotubes

CNTs:

Carbon nanotubes

GCE:

Glass carbon electrode

RSD:

Relative standard deviation

BMIMPF6 :

1-butyl-3-methylimidazolium hexafluorophosphate

References

  1. van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757

    Article  Google Scholar 

  2. Sun W, Guo CX, Zhu ZH, Li CM (2009) Ionic liquid/mesoporous carbon/protein composite microelectrode and its biosensing application. Electrochem Commun 11:2105–2108

    Article  CAS  Google Scholar 

  3. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    Article  CAS  Google Scholar 

  4. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214

    Article  CAS  Google Scholar 

  5. Banks CE, Compton RG (2006) New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst 131:15

    Article  CAS  Google Scholar 

  6. He PA, Xu Y, Fang YZ (2006) Applications of carbon nanotubes in electrochemical DNA biosensors. Microchim Acta 152(3-4):175–186

    Article  CAS  Google Scholar 

  7. Banks CE, Moore RR, Davies TJ, Compton RG (2004) Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem Commun 16:1804

    Article  Google Scholar 

  8. Sun W, Jiang Q, Xi MY, Jiao K (2009) Determination of 3, 4-dihydroxybenzoic acid by electrocatalytic oxidation at an ionic liquid modified electrode. Microchim Acta 166:343

    Article  CAS  Google Scholar 

  9. Kachoosangi R, Musameh MM, Abu-Yousef I, Yousef JM, Kanan SM, Xiao L, Davies SG, Russell A, Compton RG (2009) Carbon nanotube-ionic liquid composite sensors and biosensors. Anal Chem 81:435

    Article  CAS  Google Scholar 

  10. Zhao YF, Gao YQ, Zhan DP, Liu H, Zhao Q, Kou Y, Shao YH, Li MX, Zhuang QK, Zhu ZW (2005) Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 66:51

    Article  CAS  Google Scholar 

  11. Zhao F, Wu X, Wang MK, Liu Y, Gao LX, Dong SJ (2004) Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. Anal Chem 76:4960

    Article  CAS  Google Scholar 

  12. Wang Q, Yun YB, Zheng JB (2009) Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid. Microchim Acta 167:153–157

    Article  CAS  Google Scholar 

  13. Zhu H, Lu XQ, Li MX, Shao YH, Zhu ZW (2009) Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta 79:1446

    Article  CAS  Google Scholar 

  14. Sun YX, Fei JJ, Hou J, Zhang Q, Liu YL, Hu BA (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373–379

    Article  CAS  Google Scholar 

  15. Kachoosangi RT, Wildgoose GG, Compton RG (2008) Room temperature ionic liquid carbon nanotube paste electrodes: overcoming large capacitive currents using rotating disk electrodes. Electroanalysis 19:1483

    Article  Google Scholar 

  16. Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820

    Article  CAS  Google Scholar 

  17. Sun W, Li XQ, Wang Y, Zhao RJ, Jiao K (2009) Direct electrochemistry of guanosine on multi-walled carbon nanotubes modified carbon ionic liquid electrode. Electrochim Acta 54:4141–4148

    Article  CAS  Google Scholar 

  18. Mai NN, Liu XY, Zeng XD, Xing L, Wei WZ, Luo SL (2010) Electrocatalytic oxidation of the reduced nicotinamide adenine dinucleotide at carbon ionic liquid electrode modified with polythionine/multi-walled carbon nanotubes composite. Microchim Acta 168:215

    Article  CAS  Google Scholar 

  19. Tao H, Wei WZ, Zeng XD, Liu XY, Zhang XJ, Zhang YM (2009) Electrocatalytic oxidation and determination of estradiol using an electrode modified with carbon nanotubes and an ionic liquid. Microchim Acta 166:53

    Article  CAS  Google Scholar 

  20. Jannakoudakis AD, Jannakoudakis PD, Pagalos N, Theodoridou E, Besenhard JO (1996) Preparation and behaviour of acetylene black press-electrodes as adsorbents and metal catalysts supports. Electrochim Acta 41:449

    Article  CAS  Google Scholar 

  21. Xie PP, Chen XX, Wang F, Hu CG, Hu SS (2006) High sensitivity voltammetric determination of sodium nitroprusside at acetylene black electrode in the presence of CTAB. Colloid Surface B 48:17

    Article  CAS  Google Scholar 

  22. Li G, Ji ZM, Wu KB (2006) Square wave anodic stripping voltammetric determination of Pb2+ using acetylene black paste electrode based on the inducing adsorption ability of I-. Anal Chim Acta 577:178–182

    Article  CAS  Google Scholar 

  23. Zhang HJ, Hu CG, Lan W, Hu SS (2004) Development of an acetylene black-dihexadecyl hydrogen phosphate composite-modified glassy-carbon electrode, and its application in the determination of lovastatin in dosage drug forms. Anal Bioanal Chem 380:303

    Article  CAS  Google Scholar 

  24. Peng Y, Xu JH, Zhao J, Hu BL, Hu SS (2008) Electrochemical behavior of phenol at acetylene black-dihexadecyl hydrogen phosphate composite modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide. Russ J Electrochem 44:206

    CAS  Google Scholar 

  25. Huang WS, Zheng XJ, Zhu DZ, Wu KB (2008) Sensitive determination of honokiol using acetylene black film-modified electrode. Electrochem Solid State Lett 11:F16–F18

    Article  CAS  Google Scholar 

  26. Ashton FM, Crafts AS (1981) Dinitroanilines. In: Ashton FM, Crafts AS (eds) Mode of action of herbicides. Wiley, New York

    Google Scholar 

  27. Bureau of National Affairs EPA (1998) Draft list of candidate chemicals for high throughput screening project. Chem Regul Rep 22:693–715

    Google Scholar 

  28. Lambropoulou DA, Sakkas VA, Hela DG, Albanis TA (2002) Application of solid-phase microextraction in the monitoring of priority pesticides in the Kalamas River (NW Greece). J Chromatogr A 963:107–116

    Article  CAS  Google Scholar 

  29. Albanis TA, Hela DG, Sakellarides TM, Konstantinou IK (1998) Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography. J Chromatogr A 823:59–71

    Article  CAS  Google Scholar 

  30. Navarro S, Perez G, Navarro G, Mena L, Vela N (2006) Decay of dinitroaniline herbicides and organophosphorus insecticides during brewing of lager beer. J Food Prot 69:1699

    CAS  Google Scholar 

  31. Zhang H, Chen Z, Yang G, Wang W, Li X, Li R, Wu Y (2008) Microwave pretreatment and gas chromatography–mass spectrometry determination of herbicide residues in onion. Food Chem 108:322

    Article  CAS  Google Scholar 

  32. Bruzzoniti MC, Sarzanini C, Costantino G, Fungi M (2006) Determination of herbicides by solid phase extraction gas chromatography–mass spectrometry in drinking waters. Anal Chim Acta 578:241–249

    Article  CAS  Google Scholar 

  33. Sreedhar NY, Samatha KR, Reddy PRK, Reddy SJ (1998) Differential pulse polarographic determination of benfluralin and trifluralin in formulations soils and grains. Int J Environ Anal Chem 72:247–255

    Article  CAS  Google Scholar 

  34. Wen XQ, Fei JJ, Chen XM, Yi LH, Ge F, Huang MH (2008) Electrochemical analysis of trifluralin using a nanostructuring electrode with multi-walled carbon nanotubes. Environ Poll 156:1015

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was financially supported by the project from the National Natural Science Foundation of China (No. 20975088), the Key Project of Chinese Ministry of Education, the project from the Hunan Provincial Natural Science Foundation of China (No. 09JJ6018), the project from Scientific Research Fund of Hunan Provincial Education Department (No. 09A092), and the Open Project Program of Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education (No. 09HJYH05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Fei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, N., Ding, Y., Ai, H. et al. Acetylene black-ionic liquids composite electrode: a novel platform for electrochemical sensing. Microchim Acta 170, 165–170 (2010). https://doi.org/10.1007/s00604-010-0384-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0384-3

Keywords

Navigation