Skip to main content
Log in

Transversely Isotropic Poroelastic Behaviour of the Callovo-Oxfordian Claystone: A Set of Stress-Dependent Parameters

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In the framework of a deep geological radioactive waste disposal in France, the hydromechanical properties of the designated host rock, the Callovo-Oxfordian claystone (COx), are investigated in laboratory tests. Experiments presented in this study are carried out to determine several coefficients required within a transversely isotropic material model. They include isotropic compression tests, pore pressure tests, and deviatoric loading tests parallel and perpendicular to the bedding plane. We emphasize the adapted experimental devices and testing procedures, necessary to detect small strains under high pressures, on a material, which is sensitive to water and has a very low permeability. In particular, we discovered a significant decrease of elastic stiffness with decreasing effective stress, which was observed to be reversible. In both isotropic and deviatoric tests, a notable anisotropic strain response was found. The Young modulus parallel to bedding was about 1.8 times higher than the one perpendicular to the bedding plane. A notably low Poisson ratio perpendicular to the bedding plane with values between 0.1 and 0.2 was evidenced. While the anisotropy of the back-calculated Biot coefficient was found to be low, a significant anisotropy of the Skempton’s coefficient was computed. The performed experiments provide an overdetermined set of material parameters at different stress levels. Using all determined parameters in a least square error regression scheme, seven independent elastic coefficients and their effective stress dependency are characterized. Parameters measured under isotropic loading are well represented by this set of coefficients, while the poroelastic framework with isotropic stress dependency is not sufficient to describe laboratory findings from triaxial loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(\varepsilon _i\) :

Strain vector containing the six independent components of the second rank strain tensor

\(M_{ij}\) :

Drained stiffness tensor in matrix format

\(C_{ij}\) :

Drained compliance tensor in matrix format

\(\sigma _i\) :

Stress vector containing the six independent components of the second rank stress tensor

\(b_i\) :

Biot’s coefficient for i-th direction

\(p_f\) :

Pore fluid pressure

\(E_{i}\) :

Drained Young’s modulus in the i-th direction

\(\nu _{zh}\) :

Drained Poisson’s ratio perpendicular to bedding

\(\nu '_{zh}\) :

Apparent drained Poisson’s ratio under loading parallel to bedding

\(\nu _{hh}\) :

Drained Poisson’s ratio parallel to bedding

G :

Shear modulus perpendicular to bedding

\(G'\) :

Shear modulus parallel to bedding

\({\phi _0}\) :

Porosity

M :

Biot’s undrained modulus M

N :

Biot’s skeleton modulus N

\(K_{f}\) :

Bulk modulus of the pore fluid

\(K_{\phi }\) :

Unjacketed pore modulus

\(B_i\) :

Skempton’s coefficient for i-th direction

\(K_{s}\) :

Unjacketed bulk modulus

\(M_{ij}^{u}\) :

Undrained stiffness tensor in matrix format

\(C_{ij}^{u}\) :

Undrained compliance tensor in matrix format

\(E_{u,i}\) :

Undrained Young’s modulus in the i-th direction

\(\nu _{u,zh}\) :

Undrained Poisson’s ratio perpendicular to bedding

\(\nu _{u,hh}\) :

Undrained Poisson’s ratio parallel to bedding

\(\sigma '\) :

Terzaghi isotropic effective stress

\(\sigma \) :

Isotropic total stress

\(\varepsilon _v\) :

Volumetric strain

\(K_{d}\) :

Isotropic drained bulk modulus

H :

Biot’s pore pressure loading modulus

b :

Isotropic Biot’s coefficient

V :

Specimen volume

\(m_f\) :

Pore fluid mass

\(K_{u}\) :

Isotropic undrained bulk modulus

B :

Isotropic Skempton’s coefficient

\(D_{i}\) :

Drained isotropic compression modulus in the i-th direction

\(U_{i}\) :

Undrained isotropic compression modulus in the i-th direction

\(H_{i}\) :

Biot’s pore pressure loading modulus in the i-th direction

\(R_{D}\) :

Anisotropy ratio in drained isotropic compression

\(R_{U}\) :

Anisotropy ratio in undrained isotropic compression

\(R_{H}\) :

Anisotropy ratio in pore pressure loading

\(R_{E}\) :

Anisotropy ratio of drained Young’s moduli

q :

Deviatoric stress

\(E_z^{\infty }\), \(E_z^{0}\), \(\beta \) :

Model parameters for regression analysis

\(\rho \) :

Wet density

\(\rho _d\) :

Dry density

w :

Water content

\(S_r\) :

Saturation degree

s :

Suction

S :

Standard deviation of the estimate

References

  • Aichi M, Tokunaga T (2012) Material coefficients of multiphase thermoporoelasticity for anisotropic micro-heterogeneous porous media. Int J Solids Struct 49(23–24):3388–3396

    Article  Google Scholar 

  • Andra (2005) Dossier 2005 Argile: Evaluation of the feasibility of a geological repository in an argillaceous formation. URL https://international.andra.fr/sites/international/files/2019-03/3- Dossier 2005 Argile Synthesis - Evaluation of the feasibility of a geological repository in an argillaceous formation\_0.pdf

  • Belmokhtar M, Delage P, Ghabezloo S, Conil N (2017a) Thermal volume changes and creep in the callovo-Oxfordian claystone. Rock Mech Rock Eng 50(9):2297–2309

    Article  Google Scholar 

  • Belmokhtar M, Delage P, Ghabezloo S, Tang AM, Menaceur H, Conil N (2017b) Poroelasticity of the Callovo-Oxfordian claystone. Rock Mech Rock Eng 50(4):871–889

    Article  Google Scholar 

  • Belmokhtar M, Delage P, Ghabezloo S, Conil N (2018) Drained Triaxial Tests in Low-Permeability Shales: Application to the Callovo-Oxfordian Claystone. Rock Mech Rock Eng 51(7):1979–1993

    Article  Google Scholar 

  • Berryman JG (1992) Effective stress for transport properties of inhomogeneous porous rock. J Geophys Res 97(B12):17409–17424

    Article  Google Scholar 

  • Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601

    Google Scholar 

  • Braun P, Ghabezloo S, Delage P, Sulem J, Conil N (2019) Determination of multiple thermo-hydro-mechanical rock properties in a single transient experiment: application to shales. Rock Mech Rock Eng 52(7):2023–2038

    Article  Google Scholar 

  • Braun P, Ghabezloo S, Delage P, Sulem J, Conil N (2020) Thermo-poro-elastic behaviour of a transversely isotropic shale: Thermal expansion and pressurization, (Submitted)

  • Brown RJS, Korringa J (1975) On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40(4):608–616

    Article  Google Scholar 

  • Cariou S, Duan Z, Davy C, Skoczylas F, Dormieux L (2012) Poromechanics of partially saturated COx argillite. Appl Clay Sci 56:36–47

    Article  Google Scholar 

  • Cheng AHD (1997) Material coefficients of anisotropic poroelasticity. Int J Rock Mech Mining Sci 34(2):199–205

    Article  Google Scholar 

  • Chiarelli AS (2000) Étude expérimentale et modélisation du comportement mécanique de l’argilite de l’Est, Influence de la profondeur et de la teneur en eau. PhD thesis, Université Lille I

  • Conil N, Talandier J, Djizanne H, de La Vaissière R, Righini-Waz C, Auvray C, Morlot C, Armand G (2018) How rock samples can be representative of in situ condition: A case study of Callovo-Oxfordian claystones. J Rock Mech Geotechn Eng 10(4):613–623

    Article  Google Scholar 

  • Coussy O (2004) Poromechanics. J. Wiley & Sons, New York

    Google Scholar 

  • Escoffier S (2002) Caractérisation expérimentale du comportement hydroméchanique des argilites de Meuse/Haute-Marne. PhD thesis, Institut National Polytechnique de Lorraine

  • Ewy RT (2015) Shale/claystone response to air and liquid exposure, and implications for handling, sampling and testing. Int J Rock Mech Mining Sci 80:388–401

    Article  Google Scholar 

  • Favero V, Ferrari A, Laloui L (2018) Anisotropic behaviour of opalinus clay through consolidated and drained triaxial testing in saturated conditions. Rock Mech Rock Eng 51(5):1305–1319

    Article  Google Scholar 

  • Fortin J, Schubnel A, Guéguen Y (2005) Elastic wave velocities and permeability evolution during compaction of bleurswiller sandstone. Int J Rock Mech Mining Sci 42(7):873–889

    Article  Google Scholar 

  • Garitte B, Nguyen TS, Barnichon JD, Graupner BJ, Lee C, Maekawa K, Manepally C, Ofoegbu G, Dasgupta B, Fedors R, Pan PZ, Feng XT, Rutqvist J, Chen F, Birkholzer J, Wang Q, Kolditz O, Shao H (2017) Modelling the Mont Terri HE-D experiment for the Thermal-Hydraulic-Mechanical response of a bedded argillaceous formation to heating. Environm Earth Sci 76(9):1–20

    Google Scholar 

  • Gassmann F (1951) Über die Elastizität poröser Medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96(1–51):1–21

    Google Scholar 

  • Gens A, Vaunat J, Garitte B, Wileveau Y (2007) In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation. Géotechnique 57(2):207–228

    Article  Google Scholar 

  • Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Mining Sci 44(1):1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011

    Article  Google Scholar 

  • Ghabezloo S (2015) A micromechanical model for the effective compressibility of sandstones. Eur J Mech A Sol 51:140–153

    Article  Google Scholar 

  • Ghabezloo S, Sulem J, Guédon S, Martineau F, Saint-Marc J (2008) Poromechanical behaviour of hardened cement paste under isotropic loading. Cement Concrete Res Research 38:1424–1437

    Article  Google Scholar 

  • Guayacán-Carrillo LM, Ghabezloo S, Sulem J, Seyedi DM, Armand G (2017) Effect of anisotropy and hydro-mechanical couplings on pore pressure evolution during tunnel excavation in low-permeability ground. Int J Rock Mech Mining Sci 97:1–14

    Article  Google Scholar 

  • Hart DJ, Wang HF (2001) A single test method for determination of poroelastic constants and flow parameters in rocks with low hydraulic conductivities. Int J Rock Mech Mining Sci 38(4):577–583

    Article  Google Scholar 

  • Hassanzadegan A, Blöcher G, Milsch H, Urpi L, Zimmermann G (2014) The effects of temperature and pressure on the porosity evolution of flechtinger sandstone. Rock Mech Rock Eng47(2):421–434

    Article  Google Scholar 

  • Hatheway AW, Kiersch GA (1982) Engineering properties of rock. In: Carmichael RS (ed) Handbook of Physical Properties of Rocks. CRC Press, Boca Raton FL, pp 289–331

  • Holt RM, Bakk A, Stenebraten JF, Bauer A, Fjaer E (2018) Skempton’s A - A key to man-induced subsurface pore pressure changes. In: 52nd U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, Seattle

  • Islam MA, Skalle P (2013) An experimental investigation of shale mechanical properties through drained and undrained test mechanisms. Rock Mech Rock Eng 46(6):1391–1413

    Article  Google Scholar 

  • Makhnenko RY, Tarokh A, Podladchikov YY (2017) On the Unjacketed Moduli of Sedimentary Rock. In: Vandamme M, Dangla P, Pereira JM, Ghabezloo S (eds) Poromechanics VI - Proceedings of the 6th Biot Conference on Poromechanics, American Society of Civil Engineers, pp 897–904

  • Menaceur H, Delage P, Am Tang, Conil N (2015) The thermo-mechanical behaviour of the Callovo-Oxfordian claystone. Int J Rock Mech Mining Sci 78:290–303

    Article  Google Scholar 

  • Mohajerani M (2011) Etude experimentale du comportement thermo-hydro-mecanique de l’argilite du Callovo-Oxfordien. PhD thesis, Université Paris-Est

  • Mohajerani M, Delage P, Sulem J, Monfared M, Tang AM, Gatmiri B (2012) A laboratory investigation of thermally induced pore pressures in the Callovo-Oxfordian claystone. Int J Rock Mech Mining Sci 52:112–121

    Article  Google Scholar 

  • Mohajerani M, Delage P, Sulem J, Monfared M, Tang AM, Gatmiri B (2014) The thermal volume changes of the Callovo-Oxfordian claystone. Rock Mech Rock Eng 47(1):131–142

    Article  Google Scholar 

  • Popov VL, Heß M, Willert E (2019) Transversely Isotropic Problems. Springer, Berlin, pp 205–212

    Google Scholar 

  • Rad NS, Clough GW (1984) New procedure for saturating sand specimens. J Geotechn Eng 110(9):1205–1218

    Article  Google Scholar 

  • Schmitt L, Forsans T, Santarelli F (1994) Shale testing and capillary phenomena. Int J Rock Mech Mining Sci Geomech Abstracts 31(5):411–427

    Article  Google Scholar 

  • Skempton AW (1954) The Pore-Pressure Coefficients A and B. Géotechnique 4(4):143–147

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optimiz 11(4):341–359

    Article  Google Scholar 

  • Tang AM, Cui YJ, Barnel N (2008) Thermo-mechanical behaviour of a compacted swelling clay. Géotechnique 58(1):45–54

    Article  Google Scholar 

  • Ting TC, Chen T (2005) Poisson’s ratio for anisotropic elastic materials can have no bounds. Quarterly J Mech Appl Math 58(1):73–82

    Article  Google Scholar 

  • Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Jarrod Millman K, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey C, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors, (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2, (in press)

  • Vutukuri VS, Lama RD, Saluja SS (1974) Handbook on mechanical properties of rocks. Trans Tech Publications, Clausthal

    Google Scholar 

  • Wileveau Y, Cornet FH, Desroches J, Blumling P (2007) Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32(8–14):866–878

    Article  Google Scholar 

  • Zhang CL, Armand G, Conil N, Laurich B (2019) Investigation on anisotropy of mechanical properties of Callovo-Oxfordian claystone. Eng Geol 251:128–145

    Article  Google Scholar 

  • Zhang F, Xie SY, Hu DW, Shao JF, Gatmiri B (2012) Effect of water content and structural anisotropy on mechanical property of claystone. Appl Clay Sci 69:79–86

    Article  Google Scholar 

  • Zimmerman RW (1991) Compressibility of sandstones. Elsevier Sci, Amsterdam

    Google Scholar 

  • Zimmerman W, Somerton WH, King MS (1986) Compressibility of Porous Rocks. J Geophys Res 91(B12):12765–12777

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Braun.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, P., Ghabezloo, S., Delage, P. et al. Transversely Isotropic Poroelastic Behaviour of the Callovo-Oxfordian Claystone: A Set of Stress-Dependent Parameters. Rock Mech Rock Eng 54, 377–396 (2021). https://doi.org/10.1007/s00603-020-02268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02268-z

Keywords

Navigation