Skip to main content
Log in

Drained Triaxial Tests in Low-Permeability Shales: Application to the Callovo-Oxfordian Claystone

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Drained triaxial testing is challenging in low-permeability claystones (10−20 m2). This paper presents a method of testing low-permeability clay rocks in a standard triaxial cell. In this system, the resaturation of the specimen and the drainage conditions were enhanced by reducing the drainage length to 19 mm, the specimen radius. To do so, two geotextiles were placed around the top and bottom ends of the specimen, with no connection between them. Resaturation was hence performed by forcing water infiltration into the specimen from the upper and lower geotextiles, with a maximum infiltration length of around 19 mm, resulting in reasonable saturation durations. High-precision local measurements of radial strains were also achieved by ensuring direct contact between the LVDT rod and the specimen through the membrane. A poroelastic numerical calculation was carried out, and it was shown that, with these drainage conditions, a strain rate of 6.6 × 10−8 s−1 was satisfactory to ensure good drainage when shearing claystone specimens. After a check test made on a low-permeability sandstone with well-known mechanical characteristics, two tests were carried out to investigate specimens of the Callovo-Oxfordian claystone, a possible host rock for deep geological disposal in France. The results compare well with other published data from drained triaxial tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andra (2005) Synthesis argile: evaluation of the feasibility of a geological repository in argillaceous formation. http://www.andra.fr///www.andra.fr/international/pages/en/dossier-2005-1636.html

  • Aoki T, Tan CP, Cox RHT, Bamford WE (1995) Determination of anisotropic poroelastic parameters of a transversely isotropic shale by means of consolidated undrained triaxial tests. In: Jujii T (ed) Proceedings of 8th international congress of rock mechanics, Tokyo, Japan, vol 2, pp 172–176

  • Armand G Conil N Talandier J Seyedi D (2016) Fundamental aspects of the hydromechanical behaviour of Callovo- Oxfordian claystone: From experimental studies to model calibration and validation. Computers Geotech 85:277–286

    Article  Google Scholar 

  • Belmokhtar M, Delage P, Ghabezloo S, Menaceur H, Tang AM, Conil N (2017a) Poroelasticity of the Callovo–Oxfordian claystone. Rock Mech Rock Eng 50:871–889. https://doi.org/10.1007/s00603-016-1137-3

    Article  Google Scholar 

  • Belmokhtar M, Delage P, Ghabezloo S, Conil N (2017b) Thermal volume changes and creep in the Callovo–Oxfordian claystone. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-017-1238-7

    Google Scholar 

  • Bishop AW, Henkel DJ (1957) The measurement of soil properties in the triaxial test. Edward Arnold (Publishers) LTD, London

    Google Scholar 

  • Bonini M, Debernardi D, Barla M, Barla G (2009) The mechanical behaviour of clay shales and implications on the design of tunnels. Rock Mech Rock Eng 42(2):361–388

    Article  Google Scholar 

  • Busch A, Alles S, Gensterblum Y, Prinz D, Dewhurst D, Raven M et al (2008) Carbon dioxide storage potential of shales. Int J Greenh Gas Control 2(3):297–308

    Article  Google Scholar 

  • Charlier R, Collin F, Pardoen B, Talandier J, Radu JP, Gerard P (2013) An unsaturated hydro-mechanical modelling of two in situ experiments in Callovo–Oxfordian argillite. Eng Geol 165:46–63

    Article  Google Scholar 

  • Chiarelli AS, Shao JF, Hoteit N (2003) Modeling of elastoplastic damage behavior of a claystone. Int J Plast 19:23–45

    Article  Google Scholar 

  • Chiu HK, Johnston IW, Donald IB (1983) Appropriate techniques for triaxial testing of saturated soft rock. Int J Rock Mech Min Sci Geomech Abstr 20(3):107–120

    Article  Google Scholar 

  • Coussy O (2007) Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept. Int J Numer Anal Methods Geomech 31(15):1675–1694

    Article  Google Scholar 

  • Davy CA, Skoczylas F, Barnichon J-D, Lebon P (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. Phys Chem Earth Parts A/B/C 32:667–680

    Article  Google Scholar 

  • Delage P, Cui YJ, Tang AM (2010) Clays in radioactive waste disposal. J Rock Mech Geotech Eng 2:111–123. https://doi.org/10.3724/SP.J.1235.2010.00111

    Article  Google Scholar 

  • Delage P, Menaceur H, Tang A-M, Talandier J (2014) Suction effects in deep Callovo–Oxfordian claystone Suction effects in deep Callovo–Oxfordian claystone. Géotechnique Lett 4:267–271

    Article  Google Scholar 

  • Detournay E, Cheng AH (1993) Fundamentals of poroelasticity. In: Fairhurst C (ed) Anal des method, vol II. Chapter 5 Compr rock eng princ pract proj. Pergamon Press II, Oxford, pp 113–171

    Google Scholar 

  • Einstein HH (2000) Tunnels in Opalinus Clayshale: a review of case histories and new developments. Tunn Undergr Space Technol 15(1):13–29

    Article  Google Scholar 

  • Escoffier S (2002) Caractérisation expérimentale du comportement hydromécanique des argilites de Meuse Haute-Marne. PhD thesis, Institut National Polytechnique de Lorraine

  • Eseme E, Urai JL, Krooss BM, Littke R (2007) Review of mechanical properties of oil shales: implications for exploitation and basin modelling. Oil Shale 24(2):159–174

    Google Scholar 

  • Ewy RT (2015) Shale/claystone response to air and liquid exposure, and implications for handling, sampling and testing. Int J Rock Mech Min Sci 80:388–401

    Google Scholar 

  • Ewy RT, Stankovich RJ, Bovberg CA (2003) Mechanical behavior of some clays and shales from 200 m to 3800 m Depth. In: Culligan P, Einstein H, Whittle A (eds) Soil and rock America 2003: Proceedings of 12th PanAm conference soil mech geotech eng and 39th US rock mech symp. Verlag Glückauf, Essen, pp 445–452

  • Ferfera FMR (2001) Mécanismes physiques de l’évolution de la perméabilité d’un grès sous chargements simulant la déplétion d’un gisement. Oil Gas Sci Technol 56:347–355. https://doi.org/10.2516/ogst:2001030

    Article  Google Scholar 

  • Gaucher E, Robelin C, Matray JM, Négrel G, Gros Y, Heitz JF, Vinsot A, Rebours H, Cassagnabère A, Bouchet A (2004) ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian–Oxfordian formation by investigative drilling. Phys Chem Earth 29:55–77

    Article  Google Scholar 

  • Gens A, Vaunat J, Garitte B, Wileveau Y (2007) In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation. Géotechnique 57:207–228

    Article  Google Scholar 

  • Ghabezloo S, Sulem J (2009) Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech Rock Eng 42:1–24

    Article  Google Scholar 

  • Ghabezloo S, Sulem J (2010) Effect of the volume of the drainage system on the measurement of undrained thermo-poro-elastic parameters. Int J Rock Mech Min Sci 47:60–68

    Article  Google Scholar 

  • Ghabezloo S, Sulem J, Guédon S, Martineau F, Saint-Marc J (2008) Poromechanical behaviour of hardened cement paste under isotropic loading. Cem Concr Res 38:1424–1437

    Article  Google Scholar 

  • Gibson RE, Henkel DJ (1954) Influence of duration of tests at constant rate of strain on measured “drained” strength. Géotechnique 4:6–15

    Article  Google Scholar 

  • Hecht F (2012) New development in FreeFem+. J Numer Math 20:251–265. https://doi.org/10.1515/jnum-2012-0013

    Article  Google Scholar 

  • Hu DW, Zhang F, Shao JF (2014) Experimental study of poromechanical behavior of saturated claystone under triaxial compression. Acta Geotech 9:207–214

    Article  Google Scholar 

  • IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2008). In: Wagner W, Kretzschmar HJ (eds) International Steam Tables. Springer, Berlin, Heidelberg

    Google Scholar 

  • Islam MA, Skalle P (2013) An experimental investigation of shale mechanical properties through drained and undrained test mechanisms. Rock Mech Rock Eng 46:1391–1413. https://doi.org/10.1007/s00603-013-0377-8

    Article  Google Scholar 

  • Masri M, Sibai M, Shao JF, Mainguy M (2014) Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale. Int J Rock Mech Min Sci 70:185–191

    Google Scholar 

  • Menaceur H, Delage P, Tang A-M, Conil N (2015) The thermo-mechanical behaviour of the Callovo–Oxfordian claystone. Int J Rock Mech Min Sci 78:290–303

    Google Scholar 

  • Menaceur H, Delage P, Tang A-M, Conil N (2016a) On the thermo-hydro-mechanical behaviour of a sheared Callovo–Oxfordian claystone specimen with respect to the EDZ behaviour. Rock Mech Rock Eng 49:1875–1888

    Article  Google Scholar 

  • Menaceur H, Delage P, Tang AM, Talandier J (2016b) The status of water in swelling shales: an insight from the water retention properties of the Callovo–Oxfordian claystone. Rock Mech Rock Eng 49(12):4571–4586

    Article  Google Scholar 

  • Mohajerani M, Delage P, Monfared M, Tang A-M, Sulem J, Gatmiri B (2011) Oedometric compression and swelling behaviour of the Callovo–Oxfordian argillite. Int J Rock Mech Min Sci 48:606–615

    Article  Google Scholar 

  • Mohajerani M, Delage P, Sulem J, Monfared M, Tang A-M, Gatmiri B (2012) A laboratory investigation of thermally induced pore pressures in the Callovo–Oxfordian claystone. Int J Rock Mech Min Sci 52:112–121

    Article  Google Scholar 

  • Mohajerani M, Delage P, Sulem J, Monfared M, Tang A-M, Gatmiri B (2013) The thermal volume changes of the Callovo–Oxfordian claystone. Rock Mech Rock Eng 47:131–142

    Article  Google Scholar 

  • Monfared M (2011) Couplages température-endommagement-perméabilité dans les sols et roches argileux. PhD thesis, Université Paris-Est

  • Monfared M, Delage P, Sulem J, Mohajerani M, Tang A-M, De Laure E (2011a) A new hollow cylinder triaxial cell to study the behavior of geo-materials with low permeability. Int J Rock Mech Min Sci 48:637–649

    Article  Google Scholar 

  • Monfared M, Sulem J, Delage P, Mohajerani M (2011b) A laboratory investigation on thermal properties of the Opalinus claystone. Rock Mech Rock Eng 44:735–747. https://doi.org/10.1007/s00603-011-0171-4

    Article  Google Scholar 

  • Naumann M, Hunsche U, Schulze O (2007) Experimental investigations on anisotropy in dilatancy, failure and creep of Opalinus Clay. Phys Chem Earth 32:889–895. https://doi.org/10.1016/j.pce.2005.04.006

    Article  Google Scholar 

  • Pham QT, Vales F, Malinsky L, Nguyen M-D, Gharbi H (2007) Effects of desaturation–resaturation on mudstone. Phys Chem Earth Parts A/B/C 32:646–655

    Article  Google Scholar 

  • Schmitt L, Forsans T, Santarelli FJ (1994) Shale testing and capillary phenomena. Int J Rock Mech Min Sci Geomech Abst 31(5):411–427

    Article  Google Scholar 

  • Spang B (2010) Excel add-in for properties of water and steam in SIunits. http://www.cheresources.com/iapwsif97.shtml

  • Steiger RR, Leung RK (1991) Consolidated undrained triaxial test procedure for shales. Rock mechanics as a Multidisplinary Science. In: Proceedings of 32nd U.S. Syrup. JC Roegiers Ed, pp 637–646.


  • Swan G, Cook J, Bruce S, Meehan R (1989) Strain rate effects in Kimmeridge bay shale. Int J Rock Mech Min Sci Geomech Abstr 26(2):135–149

    Article  Google Scholar 

  • Valès F, Nguyen Minh D, Gharbi H, Rejeb A (2004) Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France). Appl Clay Sci 26:197–207

    Article  Google Scholar 

  • Villamor-Lora R, Ghazanfari E, Asanza Izquierdo E (2016) Geomechanical characterization of marcellus shale. Rock Mech Rock Eng 49(9):3403–3424

    Article  Google Scholar 

  • Wan M, Delage P, Tang A-M, Talandier J (2013) Water retention properties of the Callovo–Oxfordian claystone. Int J Rock Mech Min Sci 64:96–104

    Google Scholar 

  • Wang L, Bornert M, Chanchole S (2013) Micro-scale experimental investigation of deformation and damage of argillaceous rocks under hydric and mechanical loads. In: Poromochanics V ASCE, pp 1635–1643

  • Wileveau Y, Cornet FH, Desroches J, Blumling P (2007) Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32:866–878. https://doi.org/10.1016/j.pce.2006.03.018

    Article  Google Scholar 

  • Wissa AEZ (1969) Pore pressure measurement in saturated stiff soils. J Soil Mech Found Div Am Soc Civ Eng 95(SM4):1063–1073

    Google Scholar 

  • Wu B, Tan CP, Aoki T (1997) Specially designed techniques for conducting consolidated undrained triaxial tests on low permeability shales. Int J Rock Mech Min Sci 34:336.e1–336.e14. https://doi.org/10.1016/s1365-1609(97)00168-8

    Google Scholar 

  • Yven B, Sammartino S, Geraud Y, Homand F, Villieras F (2007) Mineralogy, texture and porosity of Callovo–Oxfordian argilites of the Meuse/Haute-Marne region (eastern Paris Basin). Mémoires la société Géologique Fr 0249–7546:73–90

    Google Scholar 

  • Zhang CL (2011) Experimental evidence for self-sealing of fractures in claystone. Phys Chem Earth 36:1972–1980

    Article  Google Scholar 

  • Zhang CL, Rothfuchs T (2004) Experimental study of the hydro-mechanical behaviour of the Callovo–Oxfordian argillite. Appl Clay Sci 26:325–336

    Article  Google Scholar 

  • Zhang CL, Rothfuchs T, Su K, Hoteit N (2007) Experimental study of the thermo-hydro-mechanical behaviour of indurated clays. Phys Chem Earth Parts A/B/C 32:957–965

    Article  Google Scholar 

  • Zhang F, Xie SY, Hu DW, Gatmiri B (2012) Effect of water content and structural anisotropy on mechanical property of claystone. Appl Clay Sci 69:79–86

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Andra, the French agency for the management of radioactive wastes, for funding this work, for providing the claystone specimens and for fruitful discussions. The work was also supported by Ecole des ponts ParisTech, in the framework of the PhD thesis of the first author. The detailed examination and fruitful suggestions by the Co-editor and the anonymous Reviewer also helped in significantly improving this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Delage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmokhtar, M., Delage, P., Ghabezloo, S. et al. Drained Triaxial Tests in Low-Permeability Shales: Application to the Callovo-Oxfordian Claystone. Rock Mech Rock Eng 51, 1979–1993 (2018). https://doi.org/10.1007/s00603-018-1442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1442-0

Keywords

Navigation