Skip to main content
Log in

Experimental and Analytical Investigations of the Effect of Hole Size on Borehole Breakout Geometries for Estimation of In Situ Stresses

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Borehole breakout is a natural phenomenon in boreholes drilled in rock due to the induced stress concentration. Many researchers have attempted to correlate this phenomenon with in situ stress magnitudes. In this paper, a series of true triaxial tests on sandstone blocks (120 × 120 × 120 mm3) with different diameter pre-drilled holes have been carried out. Results confirmed that breakout geometries (angular span and depth) are dependent on the relative stress magnitudes. It is also noticed that a larger hole size (hole radius) yielded a wider angular span and deeper normalised depth (breakout depth/hole size), which indicates that hole size is an important parameter for breakout geometries. In addition, the analysis on previous experimental studies suggested that the relationship between two breakout geometries is not unique and is heavily influenced by the horizontal stress magnitudes. The analysis of the existing model also revealed the angular span may be narrowed with increasing horizontal stress ratio under a certain stress–strength condition. Both analyses indicate the breakout geometries are not only dependent on each other but also on the horizontal stress magnitudes. This leads to a tentative conclusion that breakout geometries may not be redundant factors and might be used for horizontal stress estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(\sigma_{H}\) :

Maximum horizontal principal stress

\(\sigma_{h}\) :

Minimum horizontal principal stress

\(\sigma_{v}\) :

Vertical horizontal principal stress

\(UCS\) :

Uniaxial compressive strength

\(R\) :

Hole size

\(L\) :

Breakout depth

\(L/R\) :

Normalised breakout depth

\(\theta_{b}\) :

Breakout angular span

\(\sigma_{\theta }\) :

Tangential stress

\(\sigma_{r}\) :

Radial stress

\(\tau_{r\theta }\) :

Shear stress

\(S_{H}\) :

Maximum effective horizontal principal stresses

\(S_{h}\) :

Minimum effective horizontal principal stresses

\(\Delta P\) :

The difference between fluid pressure and the pore pressure

\(BWS\) :

Borehole wall strength

\(T\) :

Rock tensile strength

\(\tau_{s}\) :

Rock shear strength

\(P_{T}\) :

Applied uniaxial stress for fracture initiation along the primary wall

\(P_{S}\) :

Applied uniaxial stress required for fracture initiation at the sidewall

\(d\) :

Stress averaging distance (material property)

\(E\) :

Young’s modulus

\(v\) :

Poisson’s ratio

\(K_{IC}\) :

Fracture toughness

\(k\) :

Empirical positive constant, < 1

\(\lambda\) :

Empirical length (material property)

\(a\) :

Horizontal stress ratio

References

  • Ask MV, Ask D, Elvebakk H, Olesen O (2015) Stress analysis in boreholes Drag Bh and Leknes Bh, Nordland, North Norway. Rock Mech Rock Eng 48:1475–1484

    Article  Google Scholar 

  • Babcock E (1978) Measurement of subsurface fractures from dipmeter logs. AAPG Bull 62:1111–1126

    Google Scholar 

  • Barton CA, Zoback MD, Burns KL (1988) In-situ stress orientation and magnitude at the Fenton Geothermal Site, New Mexico, determined from wellbore breakouts. Geophys Res Lett 15:467–470

    Article  Google Scholar 

  • Bažant ZP, Lin FB, Lippmann H (1993) Fracture energy release and size effect in borehole breakout. Int J Numer Anal Meth Geomech 17:1–14

    Article  Google Scholar 

  • Brudy M, Zoback M, Fuchs K, Rummel F, Baumgärtner J (1997) Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: implications for crustal strength. J Geophys Res Solid Earth 102:18453–18475

    Article  Google Scholar 

  • Carter B (1992) Size and stress gradient effects on fracture around cavities. Rock Mech Rock Eng 25:167–186

    Article  Google Scholar 

  • Carter B, Lajtai E, Petukhov A (1991) Primary and remote fracture around underground cavities. Int J Numer Anal Meth Geomech 15:21–40

    Article  Google Scholar 

  • Chang C, McNeill LC, Moore JC, Lin W, Conin M, Yamada Y (2010) In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures. Geochem Geophys Geosyst 11:12

    Article  Google Scholar 

  • Cox JW (1970) The high resolution dipmeter reveals dip-related borehole and formation characteristics. In: SPWLA 11th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts

  • Cuss R, Rutter E, Holloway R (2003) Experimental observations of the mechanics of borehole failure in porous sandstone. Int J Rock Mech Min Sci 40:747–761

    Article  Google Scholar 

  • Dresen G, Stanchits S, Rybacki E (2010) Borehole breakout evolution through acoustic emission location analysis. Int J Rock Mech Min Sci 47:426–435

    Article  Google Scholar 

  • Elkadi A, Van Mier J (2006) Experimental investigation of size effect in concrete fracture under multiaxial compression. Int J Fract 140:55

    Article  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396

    Article  Google Scholar 

  • Ewy R, Cook N (1989) Fracture processes around highly stressed boreholes. In: Proc. Drilling Symp. at ETCE. ASME Houston, TX, pp 63–70

  • Fowler M, Weir F (2007) The use of borehole breakouts for geotechnical investigation of an open pit mine. Proc of the 1st SHIRMS

  • Gough D, Bell J (1982) Stress orientations from borehole wall fractures with examples from Colorado, east Texas, and northern Canada. Can J Earth Sci 19:1358–1370

    Article  Google Scholar 

  • Haimson B, Herrick C (1989) Borehole breakouts and in situ stress. 12th annual energy-sources technology conference and exhibition. New York. American Society of Mechanical Engineers, Houston, pp 17–22

    Google Scholar 

  • Haimson B, Kovacich J (2003) Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts. Eng Geol 69:219–231

    Article  Google Scholar 

  • Haimson B, Lee H (2004) Borehole breakouts and compaction bands in two high-porosity sandstones. Int J Rock Mech Min Sci 41:287–301

    Article  Google Scholar 

  • Haimson B, Lee M, Herrick C (1991) Recent advances in in situ stress measurements by hydraulic fracturing and borehole breakouts. In: 7th ISRM Congress. International Society for Rock Mechanics

  • Haimson B, Song I (1993) Laboratory study of borehole breakouts in Cordova Cream: a case of shear failure mechanism. Int J Rock Mech Min Sci Geomech Abstr 30:1047–1056

    Article  Google Scholar 

  • Haimson BC, Song I (1995) A new borehole failure criterion for estimating in situ stress from breakout span. In: 8th ISRM Congress. International Society for Rock Mechanics

  • Haimson BC, Song I (1998) Borehole breakouts in Berea sandstone: two porosity-dependent distinct shapes and mechanisms of formation. In: SPE/ISRM Rock Mechanics in Petroleum Engineering. Society of Petroleum Engineers

  • Haimson H, Herrick C (1986) Borehole breakouts-a new tool for estimating in situ stress? In: ISRM International Symposium. International Society for Rock Mechanics

  • Herrick CG, Haimson BC (1994) Modeling of episodic failure leading to borehole breakouts in Alabama limestone. In: 1st North American Rock Mechanics Symposium. American Rock Mechanics Association

  • Ingraffea A (1979) The strength ratio effect in the fracture of rock structures. In: 20th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association

  • Jaeger JC, Cook NG, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, New York

    Google Scholar 

  • Katsman R, Aharonov E, Haimson B (2009) Compaction bands induced by borehole drilling. Acta Geotech 4:151–162

    Article  Google Scholar 

  • Kessels W (1989) Observation and interpretation of time-dependent behaviour of boreholes stability in the continental deep drilling pilot borehole. In: ISRM International Symposium. International Society for Rock Mechanics

  • Kirsch C (1898) Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Zeitschrift des Vereines Deutscher Ingenieure 42:797–807

    Google Scholar 

  • Lajtai E (1972) Effect of tensile stress gradient on brittle fracture initiation. Int J Rock Mech Min Sci Geomech Abstr 5:569–578

    Article  Google Scholar 

  • Lee H, Haimson B (2006) Borehole breakouts and in situ stress in sandstones. In: In-Situ Rock Stress: International Symposium on In-Situ Rock Stress, Trondheim, Norway. CRC Press, pp 201

  • Lee H, Moon T, Haimson B (2016) Borehole breakouts induced in arkosic sandstones and a discrete element analysis. Rock Mech Rock Eng 49:1369–1388

    Article  Google Scholar 

  • LeRiche A, Kalenchuk K, Diederichs M (2017) Estimation of in situ stress from borehole breakout for improved understanding of excavation overbreak in brittle-anisotropic rock, In: Proc. 8th International Conference on Deep and High Stress Mining, Australia Centre for Geomechanics, Perth, pp 209–222

  • Lin H, Kan W, Oh J, Canbulat I (2018) Estimation of in situ maximum horizontal principal stress magnitudes from borehole breakout data using machine learning. Int J Rock Mech Min Sci (under review)

  • Lin W et al (2010) Present-day principal horizontal stress orientations in the Kumano forearc basin of the southwest Japan subduction zone determined from IODP NanTroSEIZE drilling Site C0009. Geophys Res Lett 37:13

    Google Scholar 

  • Lund B, Zoback M (1999) Orientation and magnitude of in situ stress to 6.5 km depth in the Baltic Shield. Int J Rock Mech Min Sci 36:169–190

    Article  Google Scholar 

  • Malinverno A, Saito S, Vannucchi P (2016) Horizontal principal stress orientation in the Costa Rica Seismogenesis Project (CRISP) transect from borehole breakouts. Geochem Geophys Geosyst 17:65–77

    Article  Google Scholar 

  • Masoumi H, Douglas KJ, Russell AR (2016) A bounding surface plasticity model for intact rock exhibiting size-dependent behaviour. Rock Mech Rock Eng 49:47–62

    Article  Google Scholar 

  • Mastin LG (1984) An analysis of stress-induced elongation of boreholes at depth, Master thesis, Stanford University

  • Meier T, Rybacki E, Reinicke A, Dresen G (2013) Influence of borehole diameter on the formation of borehole breakouts in black shale. Int J Rock Mech Min Sci 62:74–85

    Article  Google Scholar 

  • Molaghab A, Taherynia MH, Aghda SMF, Fahimifar A (2017) Determination of minimum and maximum stress profiles using wellbore failure evidences: a case study—a deep oil well in the southwest of Iran. J Pet Explor Prod Technol 7:707–715

    Article  Google Scholar 

  • Nelson E, Meyer J, Hillis R, Mildren S (2005) Transverse drilling-induced tensile fractures in the West Tuna area, Gippsland Basin, Australia: implications for the in situ stress regime. Int J Rock Mech Min Sci 42:361–371

    Article  Google Scholar 

  • Nesetova V, Lajtai E (1973) Fracture from compressive stress concentrations around elastic flaws. Int J Rock Mech Min Sci Geomech Abstr 4:265–284

    Article  Google Scholar 

  • Ortiz M (1988) Microcrack coalescence and macroscopic crack growth initiation in brittle solids. Int J Solids Struct 24:231–250

    Article  Google Scholar 

  • Papanastasiou P, Thiercelin M (2010) Modeling borehole and perforation collapse with the capability of predicting the scale effect. Int J Geomech 11:286–293

    Article  Google Scholar 

  • Roshan H, Masoumi H, Zhang Y, Al-Yaseri AZ, Iglauer S, Lebedev M, Sarmadivaleh M (2017) Microstructural effects on mechanical properties of shaly sandstone. J Geotech Geoenviron Eng 144:06017019

    Article  Google Scholar 

  • Sahara DP, Schoenball M, Gerolymatou E, Kohl T (2017) Analysis of borehole breakout development using continuum damage mechanics. Int J Rock Mech Min Sci 97:134–143

    Article  Google Scholar 

  • Schoenball M, Sahara DP, Kohl T (2014) Time-dependent brittle creep as a mechanism for time-delayed wellbore failure. Int J Rock Mech Min Sci 70:400–406

    Article  Google Scholar 

  • Sheets RJ, Haimson BC (2004) Drilling variables affecting fracture-like borehole breakout characteristics. In: Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS). American Rock Mechanics Association

  • Song I (1998) Borehole breakouts and core disking in westerly granite: mechanisms of formation and relationship in situ stress, PhD thesis, University of Wisconsin–Madison

  • Stock J, Healy J, Hickman S, Zoback M (1985) Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field. J Geophys Res Solid Earth 90:8691–8706

    Article  Google Scholar 

  • Tronvoll J, Fjaer E (1994) Experimental study of sand production from perforation cavities. Int J Rock Mech Min Sci Geomech Abstr 5:393–410

    Article  Google Scholar 

  • Valley B, Evans KF (2015) Estimation of the stress magnitudes in Basel enhanced geothermal system. Proc World Geothermal Congress. Melbourne, Australia, pp 19–25

    Google Scholar 

  • Van den Hoek P, Smit D-J, Kooijman A, De Bree P, Kenter C, Khodaverdian M (1994) Size dependency of hollow-cylinder stability. In: Rock Mechanics in Petroleum Engineering. Society of Petroleum Engineers

  • Walton G, Kalenchuk K, Hume C, Diederichs M (2015) Borehole Breakout Analysis to Determine the In-Situ Stress State in Hard Rock. In: 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association

  • Yaghoubi AA, Zeinali M (2009) Determination of magnitude and orientation of the in situ stress from borehole breakout and effect of pore pressure on borehole stability—case study in Cheshmeh Khush oil field of Iran. J Pet Sci Eng 67:116–126

    Article  Google Scholar 

  • Zemanek J, Caldwell R, Glenn E Jr, Holcomb S, Norton L, Straus A (1969) The borehole televiewer a new logging concept for fracture location and other types of borehole inspection. J Pet Technol 21:762–774

    Article  Google Scholar 

  • Zheng Z, Kemeny J, Cook NG (1989) Analysis of borehole breakouts. J Geophys Res Solid Earth 94:7171–7182

    Article  Google Scholar 

  • Zoback M et al (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Min Sci 40:1049–1076

    Article  Google Scholar 

  • Zoback MD, Healy JH (1992) In situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: Implications for the mechanics of crustal faulting. J Geophys Res Solid Earth 97:5039–5057

    Article  Google Scholar 

  • Zoback MD, Moos D, Mastin L, Anderson RN (1985) Well bore breakouts and in situ stress. J Geophys Res Solid Earth 90:5523–5530

    Article  Google Scholar 

Download references

Acknowledgements

The work reported here is funded by Australian Coal Association Research Program (ACARP), Grant no. C26063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Oh.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Oh, J., Canbulat, I. et al. Experimental and Analytical Investigations of the Effect of Hole Size on Borehole Breakout Geometries for Estimation of In Situ Stresses. Rock Mech Rock Eng 53, 781–798 (2020). https://doi.org/10.1007/s00603-019-01944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01944-z

Keywords

Navigation