Skip to main content

Advertisement

Log in

A Bounding Surface Plasticity Model for Intact Rock Exhibiting Size-Dependent Behaviour

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A new constitutive model for intact rock is presented recognising that rock strength, stiffness and stress–strain behaviour are affected by the size of the rock being subjected to loading. The model is formulated using bounding surface plasticity theory. It is validated against a new and extensive set of unconfined compression and triaxial compression test results for Gosford sandstone. The samples tested had diameters ranging from 19 to 145 mm and length-to-diameter ratios of 2. The model captures the continuous nonlinear stress–strain behaviour from initial loading, through peak strength to large shear strains, including transition from brittle to ductile behaviour. The size dependency was accounted for through a unified size effect law applied to the unconfined compressive strength—a key model input parameter. The unconfined compressive strength increases with sample size before peaking and then decreasing with further increasing sample size. Inside the constitutive model two hardening laws act simultaneously, each driven by plastic shear strains. The elasticity is stress level dependent. Simple linear loading and bounding surfaces are adopted, defined using the Mohr–Coulomb criterion, along with a non-associated flow rule. The model simulates well the stress–strain behaviour of Gosford sandstone at confining pressures ranging from 0 to 30 MPa for the variety of sample sizes considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abou-Sayed AS, Brechtel CE (1976) Experimental investigation of the effects of size on the uniaxial compressive strength of cedar city quartz diorite. The 17th U.S. Symposium on Rock Mechanics US. 5D6, pp 1–9

  • Al-Tabba A, Muir Wood D (1989) An experimentally based “bubble” model for clay. In: Proceedings of the 3rd International Symposium on Numerical Models in Geomechanics (NUMOG III). London, pp 91–99

  • Aubertin M, Li L, Simon R, Khalfi S (1999) Formulation and application of a short-term strength criterion for isotropic rocks. Can Geotech J 36:947–960

    Article  Google Scholar 

  • Aubertin M, Li L, Simon R (2000) A multiaxial stress criterion for short and long term strength of isotropic rock media. Int J Rock Mech Min Sci 37:1169–1193

    Article  Google Scholar 

  • Baecher GB, Einstein HH (1981) Size effect in rock testing. Geophys Res Lett 8(7):671–674

    Article  Google Scholar 

  • Bardet JP (1986) Bounding surface plasticity model for sands. J Eng Mech 112(11):Paper No. 21045

  • Bazant ZP (1983) Size effect in blunt fracture: concrete, rock, metal. Eng Mech 110(4):518–535 (Paper No. 18730)

    Article  Google Scholar 

  • Bazant ZP (1997) Scaling of quasibrittle fracture: hypotheses of invasive and lacunar fractality, their critique and Weibull connection. Int J Frac 83:41–65

    Article  Google Scholar 

  • Bazant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton

    Google Scholar 

  • Besuelle P, Desrues J, Raynaud S (2000) Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int J Rock Mech Min Sci 37:1223–1237

    Article  Google Scholar 

  • Bieniawski ZT (1975) The point load test in geotechnical practice. Eng Geol 9:1–11

    Article  Google Scholar 

  • Borodich FM (1999) Fractals and fractal scaling in fracture mechanics. Int J Fract 95:239–259

    Article  Google Scholar 

  • Bourgeois F, Shao JF, Ozanam O (2002) An elastoplastic model for unsaturated rocks and concrete. Mech Res Commun 29:383–390

    Article  Google Scholar 

  • Broch E, Franklin JA (1972) The point-load strength test. Int J Rock Mech Min Sci 9:669–697

    Article  Google Scholar 

  • Brook N (1980) Size correction for point load testing. Int J Rock Mech Min Sci 17:231–235

    Article  Google Scholar 

  • Brook N (1985) The equivalent core diameter method of size and shape correction in point load testing. Int J Rock Mech Min Sci 22(2):61–70

    Article  Google Scholar 

  • Carpinteri A (1994) Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech Mater 18:89–101

    Article  Google Scholar 

  • Carpinteri A, Chiaia B, Ferro G (1995) Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder. Mater Struct 28:311–317

    Article  Google Scholar 

  • Carpinteri A, Ferro G (1994) Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure. Mater Struct 27:563–571

    Article  Google Scholar 

  • Chiarellia AS, Shaoa JF, Hoteitb N (2003) Modeling of elastoplastic damage behaviour of a Claystone. Int J Plast 19:23–45

    Article  Google Scholar 

  • Cividini A (1993) Constitutive behavior and numerical modeling. In: Hudson JA (ed) Comprehensive rock engineering, principles, practice and projects, vol 1. BPCC Wheatons Ltd, London

    Google Scholar 

  • Corkum AG (2007) The mechanical behaviour of weak mudstone (Opalinus Clay) at low stresses. Int J Rock Mech Min Sci 44:196–209

    Article  Google Scholar 

  • Cremer C, Pecker A, Davenne L (2001) Cyclic macro-element for soil-structure interaction: material and geometrical nonlinearities. Int J Numer Anal Methods Geomech 25(13):1257–1284

    Article  Google Scholar 

  • Crouch RS, Wolf PJ, Dafalias YF (1994) Unified critical-state bounding surface plasticity model for soil. J Eng Mech 120(11):2251–2270 (No 7001)

    Article  Google Scholar 

  • Darlington WJ, Ranjith PG (2011) The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials. Rock Mech Rock Eng 44:513–529

    Article  Google Scholar 

  • Desai CS (1980) A general basic for yield, failure and potential functions in plasticity. Int J Numer Anal Methods Geomech 4:361–375

    Article  Google Scholar 

  • Desai CS, Faruque MO (1984) Constitutive model for (geological) materials. J Eng Mech 110(9):1391–1408

    Article  Google Scholar 

  • Dey T, Halleck P (1981) Some aspects of size-effect in rock failure. Geophys Res Lett 8(7):691–694

    Article  Google Scholar 

  • Dhir RK, Sangha CM (1973) Relationships between size, deformation and strength for cylindrical specimens loaded in uniaxial compression. Int J Rock Mech Min Sci 10:699–712

    Article  Google Scholar 

  • Gajo A, Muir Wood D (1999a) Severn-Trent sand: a kinematic-hardening constitutive model: the q-p formulation. Geotechnique 49(5):595–614

    Article  Google Scholar 

  • Gajo A, Muir Wood D (1999b) A kinematic hardening constitutive model for sands: the multiaxial formulation. Int J Numer Anal Methods Geomech 23:925–965

    Article  Google Scholar 

  • Gajo A, Muir Wood D (2001) A new approach to anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behavior. Int J Numer Anal Methods Geomech 25:207–241

    Article  Google Scholar 

  • Greminger M (1982) Experimental studies of the influence of rock anisotropy and size and shape effects in point-load testing. Int J Rock Mech Min Sci 19:241–246

    Article  Google Scholar 

  • Grueschow E, Rudnicki JW (2005) Elliptic yield cap constitutive modeling for high porosity sandstone. Int J Sol Struct 42:4574–4587

    Article  Google Scholar 

  • Hawkins AB (1998) Aspects of rock strength. Bull Eng Geol Environ 57:17–30

    Article  Google Scholar 

  • Hiramatsu Y, Oka Y (1966) Determination of the tensile strength of rock by a compression test of an irregular test piece. Int J Rock Mech Min Sci 3:89–99

    Article  Google Scholar 

  • Hoek E, Brown E (1980) Underground excavations in Rock. Hertford, London, p 527

    Google Scholar 

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Article  Google Scholar 

  • Hoskins JR, Horino FG (1969) Influence of spherical head size and specimen diameters on the uniaxial compressive strength of rocks. US Dept. of the Interior, Bureau of Mines, Washington, DC, US

  • ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci 16(2):135–140

    Google Scholar 

  • Khalili N, Habte MA, Valliappan S (2005) A bounding surface plasticity model for cyclic loading of granular soils. Int J Numer Anal Methods Geomech 63:1939–1960

    Article  Google Scholar 

  • Kim MK, Lade PV (1988) Single hardening constitutive model for frictional materials: I. plastic potential function. Comp Geotech 5:307–324

    Article  Google Scholar 

  • Khan AS, Xiang Y, Huang S (1991) Behaviour of Berea sandstone under confining pressure part I: yield and failure surfaces and nonlinear elastic response. Int J Plast 7:607–624

    Article  Google Scholar 

  • Khan AS, Xiang Y, Huang S (1992) Behaviour of Berea sandstone under confining pressure part II: elastic-plastic response. Int J Plast 8:209–230

    Article  Google Scholar 

  • Kramadibrata S, Jones IO (1993) Size effect on strength and deformability of brittle intact rock. Scale Effect in Rock Masses, Lisbon, Portugal. Balkema, 277–284

  • Lade PV (1977) Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int J Solid Struct 13:1019–1035

    Article  Google Scholar 

  • Lade PV, Kim MK (1988a) Single hardening constitutive model for frictional materials II. Yield criterion and plastic work contours. Comp Geotech 6:13–29

    Article  Google Scholar 

  • Lade PV, Kim MK (1988b) Single hardening constitutive model for frictional materials: III. Comparisons with experimental data. Comp Geotech 6:31–47

    Article  Google Scholar 

  • Lade PV, Nelson RB (1987) Modeling the elastic behaviour of granular materials. Int J Numer Anal Methods Geomech 11:521–542

    Article  Google Scholar 

  • Lubarda VA, Mastilovic S, Knap J (1996) Brittle-ductile transition on porous rocks by cap model. J Eng Mech 122(7):633–642

    Article  Google Scholar 

  • Lundborg N (1967) The strength-size relation of granite. Int J Rock Mech Min Sci 4:269–272

    Article  Google Scholar 

  • Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5(3):173–225

    Article  Google Scholar 

  • Michelis P (1985) Polyaxial yielding of granular rock. J Eng Mech 111(8):1049–1066

    Article  Google Scholar 

  • Mogi K (1962) The influence of dimensions of specimens on the fracture strength of rocks. Bull Earth Res Inst 40:175–185

    Google Scholar 

  • Morvan M, Wong H, Branque D (2010) An unsaturated soil model with minimal number of parameters based on bounding surface plasticity. Int J Numer Anal Methods Geomech 34:1512–1537

    Article  Google Scholar 

  • Muir Wood D (2004) Geotechnical modelling. Spon Press, New York

    Book  Google Scholar 

  • Nishimatsu Y, Yamagushi U, Motosugi K, Morita M (1969) The size effect and experimental error of the strength of rocks. J Min Mat Proc Inst Jpn 18:1019–1025

    Google Scholar 

  • Pells P (2004) On the absence of size effects for substance strength of Hawkesbury sandstone. Aus Geomech 39(1):79–83

    Google Scholar 

  • Pestana JM, Whittle AJ (1999) Formulation of a unified constitutive model for clays and sands. Int J Numer Anal Methods Geomech 23:1215–1243

    Article  Google Scholar 

  • Pratt HR, Black AD, Brown WS, Brace WF (1972) The effect of specimen size on the mechanical properties of unjointed diorite. Int J Rock Mech Min Sci 9:513–529

    Article  Google Scholar 

  • Roscoe KH, Schofield AN (1963) Mechanical behaviour of an idealised ‘wet’ clay. 2nd European Conference SMFE, Wiesbaden. 47–54

  • Rouainia M, Muir Wood D (2001) A kinematic constitutive model for natural clays with loss of structure. Geotechnique 50:153–164

    Article  Google Scholar 

  • Russell AR, Khalili N (2004) A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J 41:1179–1192

    Article  Google Scholar 

  • Russell AR, Khalili N (2006) A unified bounding surface plasticity model for unsaturated soils. Int J Numer Anal Methods Geomech 30:181–212

    Article  Google Scholar 

  • Schwer LE, Murray YD (1994) A three-invariant smooth cap model with mixed hardening. Int J Numer Anal Methods Geomech 18:657–688

    Article  Google Scholar 

  • Shah KR (1997) An elasto-plastic constitutive model for brittle-ductile transition in porous rocks. Int J Rock Mech Min Sci 34((3–4)):283.e1–283.e13

    Google Scholar 

  • Simon R, Deng D (2009) Estimation of scale effects of intact rock using dilatometer tests results. 62nd Canadian Geotechnical Conference, Halifax. 481–488

  • Sufian A, Russell AR (2013) Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT. Int J Rock Mech Min Sci 57:119–131

    Google Scholar 

  • Sulem J, Ouffroukh H (2006a) Hydromechanical behaviour of Fontainebleau sandstone. Rock Mech Rock Eng 39(3):185–213

    Article  Google Scholar 

  • Sulem J, Ouffroukh H (2006b) Shear banding in drained and undrained triaxial tests on saturated sandstone: porosity and permeability evolution. Int J Rock Mech Min Sci 43:292–310

    Article  Google Scholar 

  • Thuro K, Plinninger RJ, Zah S, Schutz, S (2001a) Scale effect in rock strength properties. Part 1: unconfined compressive test and Brazilian test. Rock Mechanics- a challenge for Society, Zeitlinger, Switzerland. 169–174

  • Thuro K, Plinninger RJ, Zah S, Schutz S (2001b) Scale effect in rock strength properties. Part 2: Point load test and point load strength index. Rock Mechanics- a challenge for Society, Zeitlinger, Switzerland. 175–180

  • Van Mier J (1996) Fracture processes of concrete. CRC Press Boca Raton, FL

    Google Scholar 

  • Wawersik WR, Fairhurst C (1970) A study of brittle rock fracture in laboratory compression experiments. Int J Rock Mech Min Sci 7:561–575

    Article  Google Scholar 

  • Weibull W (1939) A statistical theory of the strength of materials. Proc Royal Swedish Acad Eng Sci 151:1–45

  • Weng MC, Jeng FS, Huang TH, Lin ML (2005) Characterizing the deformation behavior of Tertiary sandstone. Int J Rock Mech Min Sci 42:388–401

    Article  Google Scholar 

  • Wijk G, Rehbinder G, Logdstrom G (1978) The relation between the uniaxial tensile strength and the sample size for Bohus granite. Rock Mech Rock Eng 10:201–219

    Article  Google Scholar 

  • Wong H, Morvan M, Branque D (2010) A 13-parameter model for unsaturated soil based on bounding surface plasticity. J Rock Mech Geotech Eng 2(2):135–142

    Article  Google Scholar 

  • Yoshinaka R, Osada M, Park H, Sasaki T, Sasaki K (2008) Practical determination of mechanical design parameters of intact rock considering scale effect. Eng Geol 96(3–4):173–186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian R. Russell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoumi, H., Douglas, K.J. & Russell, A.R. A Bounding Surface Plasticity Model for Intact Rock Exhibiting Size-Dependent Behaviour. Rock Mech Rock Eng 49, 47–62 (2016). https://doi.org/10.1007/s00603-015-0744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0744-8

Keywords

Navigation