Skip to main content
Log in

Investigation of the Effects of Fracture Orientation and Saturation on the Vp/Vs Ratio and Their Implications

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Fractures are widely distributed within the Earth’s crust and have a substantial influence on wave propagation. Although many studies have been conducted on fracture characterization based on seismic anisotropic attributes, natural horizontal fractures and hydraulic fracture networks have yet to be characterized. Here, we investigate the influence of the fracture orientation and saturation on the Vp/Vs ratio via laboratory observations and theoretical modeling. Then, we discuss the feasibility of using the Vp/Vs ratio to predict natural horizontal fractures and evaluate hydraulic fracture networks. Our study demonstrates that an abnormally low Vp/Vs ratio, together with a lack of shear wave splitting, could be used to predict horizontal fractures. Fracture network development that results from hydraulic fracturing stimulation is associated with a much higher Vp/Vs ratio and no shear wave splitting; these two characteristics could be used to estimate fracture development and evaluate hydraulic fracturing stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Vp/Vs:

Ratio of the P-wave velocity to the S-wave velocity

\({\sigma _i}\) :

Stress tensor

\({\varepsilon _{\text{f}}}\) :

Crack/fracture density

\({K_0}\) :

Bulk modulus of the solid matrix

\({v_0}\) :

Poisson’s ratio of the solid matrix

\({E_0}\) :

Young’s modulus of the solid matrix

\(K\) :

Bulk modulus of the cracked rocks

\(v\) :

Poisson’s ratio of the cracked rocks

G :

Shear modulus

\(\gamma\) :

Shear wave velocity anisotropy

\(S_{{ijkl}}^{{}}\) :

Element of the elastic compliance tensor

\(S_{{ijkl}}^{0}\) :

Compliance tensor of the intact rock

\(\Delta {S_{ijkl}}\) :

Fracture compliance tensor

\({\alpha _{ij}}\) :

Second rank of the crack/fracture tensor

\({\beta _{ijkl}}\) :

Fourth rank of the crack/fracture tensor

\({B_N}\) :

Normal terms of the fracture compliance tensor

\({B_{\text{T}}}\) :

Shear terms of the fracture compliance tensor

\(a\) :

Radius of the fractures

\({\delta _{\text{f}}}\) :

Coupling factor between the stress and the fluid pressure

\(\chi\) :

Random fracture density sensitivity coefficient

LF:

Low-frequency limit

HF:

High-frequency limit

SWS:

Shear wave splitting defined as \(100 \times \frac{{{V_{{\text{SH}}}} - {V_{{\text{SV}}}}}}{{{V_{{\text{SV}}}}}}\%\).

References

  • Al-Harrasi OH, Kendall J-M, Chapman M (2011) Fracture characterization using frequency-dependent shear wave anisotropy analysis of microseismic data. Geophys J Int 185(2):1059–1070

    Article  Google Scholar 

  • Amalokwu K, Best AI, Chapman M (2016) Effects of aligned fractures on the response of velocity and attenuation ratios to water saturation variation: a laboratory study using synthetic sandstones. Geophys Prospect 64(4):942–957

    Article  Google Scholar 

  • Amann F, Button EA, Evans KF, Gischig VS, Blümel M (2011) Experimental study of the brittle behavior of clay shale in rapid unconfined compression. Rock Mech Rock Eng 44(4):415–430

    Article  Google Scholar 

  • Bustin AMM, Bustin RM (2012) Importance of rock properties on the producibility of gas shales. Int J Coal Geol 103(23):132–147

    Article  Google Scholar 

  • Chapman M, Liu E (2004) Frequency dependent azimuthal amplitude variations in reflections from a fractured layer. In: SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists

  • Chapman M, Zatsepin SV, Crampin S (2002) Derivation of a microstructural poroelastic model. Geophys J Int 151(2):427–451

    Article  Google Scholar 

  • Chen Q, Kang Y, You L, Yang P, Zhang X, Cheng Q (2017) Change in composition and pore structure of Longmaxi black shale during oxidative dissolution. Int J Coal Geol 172:95–111

    Article  Google Scholar 

  • Chong Z, Karekal S, Li X, Hou P, Yang G, Liang S (2017a) Numerical investigation of hydraulic fracturing in transversely isotropic shale reservoirs based on the discrete element method. J Nat Gas Sci Eng 46:398–420

    Article  Google Scholar 

  • Chong Z, Li X, Hou P, Wu Y, Zhang J, Chen T, Liang S (2017b) Numerical investigation of bedding plane parameters of transversely isotropic shale. Rock Mech Rock Eng 50(5):1183–1204

    Article  Google Scholar 

  • Curtis JB (2002) Fractured shale-gas systems. AAPG Bull 86(11):1921–1938

    Google Scholar 

  • Dahi Taleghani A, Gonzalez M, Shojaei A (2016) Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations. Comput GeoTech 71:361–368

    Article  Google Scholar 

  • Ding W, Li C, Li C, Xu C, Jiu K, Zeng W, Wu L (2012) Fracture development in shale and its relationship to gas accumulation. Geosci Front 3(1):97–105

    Article  Google Scholar 

  • Ding P, Di B, Wang D, Wei J, Li X (2017) Measurements of seismic anisotropy in synthetic rocks with controlled crack geometry and different crack densities. Pure Appl Geophys 174(5):1907–1922

    Article  Google Scholar 

  • Ding P, Di B, Wang D, Wei J, Zeng L (2018) P- and S-wave velocity and anisotropy in saturated rocks with aligned cracks. Wave Motion 81:1–14

    Article  Google Scholar 

  • Gale JFW, Laubach SE, Olson JE, Eichhubl P, Fall A (2014) Natural fractures in shale: a review and new observations. AAPG Bull 98(11):2165–2216

    Article  Google Scholar 

  • Galvin RJ, Gurevich B (2015) Frequency-dependent anisotropy of porous rocks with aligned fractures. Geophys Prospect 63(1):1–10

    Article  Google Scholar 

  • Ghanbari E, Dehghanpour H (2015) Impact of rock fabric on water imbibition and salt diffusion in gas shales. Int J Coal Geol 138:55–67

    Article  Google Scholar 

  • Guéguen Y, Sarout J (2009) Crack-induced anisotropy in crustal rocks: predicted dry and fluid-saturated Thomsen’s parameters. Phys Earth Planet In 172(1):116–124

    Article  Google Scholar 

  • Guéguen Y, Sarout J (2011) Characteristics of anisotropy and dispersion in cracked medium. Tectonophysics 503(1):165–172

    Article  Google Scholar 

  • Guo J, Shuai D, Wei J, Ding P, Gurevich B (2018) P-wave dispersion and attenuation due to scattering by aligned fluid saturated fractures with finite thickness: theory and experiment. Geophys J Int 215(3):2114–2133

    Article  Google Scholar 

  • Hou B, Chen M, Cheng W, Diao C (2016) Investigation of hydraulic fracture networks in shale gas reservoirs with random fractures. Arab J Sci Eng 41(7):2681–2691

    Article  Google Scholar 

  • Hudson JA, Pointer T, Liu E (2001) Effective-medium theories for fluid-saturated materials with aligned cracks. Geophys Prospect 49(5):509–522

    Article  Google Scholar 

  • Kachanov M (1993) Elastic solids with many cracks and related problems. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 30. Elsevier, New York, pp 259–445

    Google Scholar 

  • Kresse O, Weng X, Gu H, Wu R (2013) Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mech Rock Eng 46(3):555–568

    Article  Google Scholar 

  • Li X-Y, Crampin S (1991) Complex component analysis of shear-wave splitting: case studies. Geophys J Int 107(3):605–613

    Article  Google Scholar 

  • Li JC, Li HB, Zhao J (2015a) An improved equivalent viscoelastic medium method for wave propagation across layered rock masses. Int J Rock Mech Min Sci 73:62–69

    Article  Google Scholar 

  • Li JC, Liu TT, Li HB, Liu YQ, Liu B, Xia X (2015b) Shear wave propagation across filled joints with the effect of interfacial shear strength. Rock Mech Rock Eng 48(4):1547–1557

    Article  Google Scholar 

  • Li M, Yin G, Xu J, Cao J, Song Z (2016) Permeability evolution of shale under anisotropic true triaxial stress conditions. Int J Coal Geol 165:142–148

    Article  Google Scholar 

  • Li H, Lu Y, Zhou L, Tang J, Han S, Ao X (2018a) Experimental and model studies on loading path-dependent and nonlinear gas flow behavior in shale fractures. Rock Mech Rock Eng 51(1):227–242

    Article  Google Scholar 

  • Li N et al (2018b) Acoustic emission response of laboratory hydraulic fracturing in layered shale. Rock Mech Rock Eng 51(11):3395–3406

    Article  Google Scholar 

  • Li JC, Rong LF, Li HB, Hong SN (2019) An SHPB test study on stress wave energy attenuation in jointed rock masses. Rock Mech Rock Eng 52(2):403–420

    Article  Google Scholar 

  • Lin C, He J, Li X, Wan X, Zheng B (2017) An experimental investigation into the effects of the anisotropy of shale on hydraulic fracture propagation. Rock Mech Rock Eng 50(3):543–554

    Article  Google Scholar 

  • Liu E, Martinez A (2013) Seismic fracture characterization: Concepts and practical applications. EAGE Publications BV

  • Liu J, Yao Y, Liu D, Elsworth D (2017) Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale. Int J Coal Geol 179:211–218

    Article  Google Scholar 

  • Mallick S, Frazer LN (1991) Reflection/transmission coefficients and azimuthal anisotropy in marine seismic studies. Geophys J Int 105(1):241–252

    Article  Google Scholar 

  • Nagel NB, Sanchez-Nagel MA, Zhang F, Garcia X, Lee B (2013) Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock Mech Rock Eng 46(3):581–609

    Article  Google Scholar 

  • Peacock SM, Christensen NI, Bostock MG, Audet P (2011) High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology 39(5):471–474

    Article  Google Scholar 

  • Pointer T, Liu E, Hudson JA (2000) Seismic wave propagation in cracked porous media. Geophys J Int 142(1):199–231

    Article  Google Scholar 

  • Rivard C, Lavoie D, Lefebvre R, Séjourné S, Lamontagne C, Duchesne M (2014) An overview of Canadian shale gas production and environmental concerns. Int J Coal Geol 126:64–76

    Article  Google Scholar 

  • Sang Q, Li Y, Yang Z, Zhu C, Yao J, Dong M (2016) Experimental investigation of gas production processes in shale. Int J Coal Geol 159:30–47

    Article  Google Scholar 

  • Sarout J, Cazes E, Delle Piane C, Arena A, Esteban L (2017a) Stress-dependent permeability and wave dispersion in tight cracked rocks: experimental validation of simple effective medium models. J Geophys Res Solid Earth 122(8):6180–6201

    Article  Google Scholar 

  • Sarout J, Le Gonidec Y, Ougier-Simonin A, Schubnel A, Guéguen Y, Dewhurst DN (2017b) Laboratory micro-seismic signature of shear faulting and fault slip in shale. Phys Earth Planet In 264:47–62

    Article  Google Scholar 

  • Savage MK (1999) Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys 37(1):65–106

    Article  Google Scholar 

  • Schubnel A, Guéguen Y (2003) Dispersion and anisotropy of elastic waves in cracked rocks. J Geophys Res Solid Earth 108(B2)

  • Shapiro S, Rentsch S, Rothert E (2005) Characterization of hydraulic properties of rocks using probability of fluid-induced microearthquakes. Geophysics 70(2):F27–F33

    Article  Google Scholar 

  • Shapiro SA, Dinske C, Rothert E (2006) Hydraulic-fracturing controlled dynamics of microseismic clouds. Geophys Res Lett 33(14):L14312

    Article  Google Scholar 

  • Suppachoknirun T, Tutuncu AN (2017) Hydraulic fracturing and production optimization in Eagle Ford shale using coupled geomechanics and fluid flow model. Rock Mech Rock Eng 50(12):3361–3378

    Article  Google Scholar 

  • Tang X et al (2014) Shale characteristics in the southeastern Ordos Basin, China: implications for hydrocarbon accumulation conditions and the potential of continental shales. Int J Coal Geol 128:32–46

    Article  Google Scholar 

  • Tillotson P, Chapman M, Sothcott J, Best AI, Li X-Y (2014) Pore fluid viscosity effects on P- and S-wave anisotropy in synthetic silica-cemented sandstone with aligned fractures. Geophys Prospect 62(6):1238–1252

    Article  Google Scholar 

  • Verdon JP, Kendall JM (2011) Detection of multiple fracture sets using observations of shear-wave splitting in microseismic data. Geophys Prospect 59(4):593–608

    Article  Google Scholar 

  • Wang Y (2011) Seismic anisotropy estimated from P-wave arrival times in crosshole measurements. Geophys J Int 184(3):1311–1316

    Article  Google Scholar 

  • Wang X, Schubnel A, Fortin J, David EC, Guéguen Y, Ge H (2012) High Vp/Vs ratio: saturated cracks or anisotropy effects? Geophys Res Lett 39(11):L11307

    Article  Google Scholar 

  • Wang Y, Li X, Zhang B (2016) Analysis of fracturing network evolution behaviors in random naturally fractured rock blocks. Rock Mech Rock Eng 49(11):4339–4347

    Article  Google Scholar 

  • Wang D, Qu S-L, Ding P-B, Zhao Q (2017) Analysis of dynamic fracture compliance based on poroelastic theory. Part I: Model formulation and analytical expressions. Pure Appl Geophys 174(5):2103–2120

    Article  Google Scholar 

  • Wang D, Ding P, Ba J (2018) Analysis of dynamic fracture compliance based on poroelastic theory. Part II: Results of numerical and experimental tests. Pure Appl Geophys 175(8):2987–3001

    Article  Google Scholar 

  • Wu X, Chapman M, Wilson A, Li XY (2010) Estimating seismic dispersion from pre-stack data using frequency-dependent AVO inversion. In: SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists

  • Yuan W et al (2014) Experimental study and modelling of methane adsorption and diffusion in shale. Fuel 117:509–519

    Article  Google Scholar 

  • Yuan B, Zheng D, Moghanloo RG, Wang K (2017) A novel integrated workflow for evaluation, optimization, and production predication in shale plays. Int J Coal Geol 180:18–28

    Article  Google Scholar 

  • Yue D, Wu S, Xu Z, Xiong L, Chen D, Ji Y, Zhou Y (2018) Reservoir quality, natural fractures, and gas productivity of upper Triassic Xujiahe tight gas sandstones in western Sichuan Basin, China. Mar Petrol Geol 89:370–386

    Article  Google Scholar 

  • Zeng L, Lyu W, Li J, Zhu L, Weng J, Yue F, Zu K (2016) Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China. J Nat Gas Sci Eng 30:1–9

    Article  Google Scholar 

  • Zhang C, Zhu D, Luo Q, Liu L, Liu D, Yan L, Zhang Y (2017) Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China. J Asian Earth Sci 146:279–295

    Article  Google Scholar 

  • Zhao X, Young RP (2011) Numerical modeling of seismicity induced by fluid injection in naturally fractured reservoirs. Geophysics 76(6):WC167–WC180

    Article  Google Scholar 

  • Zhou J, Jin Y, Chen M (2010) Experimental investigation of hydraulic fracturing in random naturally fractured blocks. Int J Rock Mech Min Sci 47(7):1193–1199

    Article  Google Scholar 

  • Zou Y, Ma X, Zhang S, Zhou T, Li H (2016a) Numerical investigation into the influence of bedding plane on hydraulic fracture network propagation in shale formations. Rock Mech Rock Eng 49(9):3597–3614

    Article  Google Scholar 

  • Zou Y, Zhang S, Ma X, Zhou T, Zeng B (2016b) Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations. J Struct Geol 84:1–13

    Article  Google Scholar 

  • Zou Y, Zhang S, Zhou T, Zhou X, Guo T (2016c) Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology. Rock Mech Rock Eng 49(1):33–45

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund Projects (41804127, 41831281, and 41804105), the Major National Project Program (2017ZX05018-005), and the Fundamental Research Funds for the Central Universities (2462018YJRC008). We would like to thank Dr. Jingbo Wang from the Sinopec Exploration Company for the discussion regarding natural fractures in shales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, P., Wang, D., Di, G. et al. Investigation of the Effects of Fracture Orientation and Saturation on the Vp/Vs Ratio and Their Implications. Rock Mech Rock Eng 52, 3293–3304 (2019). https://doi.org/10.1007/s00603-019-01770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01770-3

Keywords

Navigation