Skip to main content
Log in

Analysis of Dynamic Fracture Compliance Based on Poroelastic Theory. Part I: Model Formulation and Analytical Expressions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The presence of bedding-parallel fractures at any scale in a rock will considerably add to its compliance and elastic anisotropy. Those properties will be more significantly affected when there is a relatively high degree of connectivity between the fractures and the corresponding interconnected pores. This contribution uses linear poroelasticity to reveal the characteristics of the full frequency-dependent compliance of an infinitely extended fracture model assuming the periodicity of the fractured structures. The fracture compliance tensor is complex-valued due to the wave-induced fluid flow between fractures and pores. The interaction between the adjacent fractures is considered under fluid mass conservation throughout the whole pore space. The quantitative effects of fracture (volume) density (the ratio between fracture thickness and spacing) and host rock porosity are analyzed by the diffusion equation for a relatively low-frequency band. The model in this paper is equivalent to the classical dry linear slip model when the bulk modulus of fluid in the fractures tends to zero. For the liquid-filled case, the model becomes the anisotropic Gassmann’s model and sealed saturated linear slip model at the low-frequency and high-frequency limits, respectively. Using the dynamic compliance definition, we can effectively distinguish the saturating fluids in the fractures with the same order magnitude of bulk modulus (e.g., water and oil) using the compliance ratio method. Additionally, the modified dynamic model can be simplified as acceptable empirical formulas if the strain on the fractures induced by the incoming waves is small enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adelinet, M., Fortin, J., & Guéguen, Y. (2011). Dispersion of elastic moduli in a porous-cracked rock: Theoretical predictions for squirt-flow. Tectonophysics, 503(1), 173–181.

    Article  Google Scholar 

  • Bear, J. (1972). Dynamics of fluid in porous media. New York: Elsevier.

    Google Scholar 

  • Biot, M. A. (1956). Theory of elastic waves in a fluid-saturated porous solid. I. Low frequency range. Journal of the Acoustic Society of America, 28, 168–178.

    Article  Google Scholar 

  • Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33, 1482–1498.

    Article  Google Scholar 

  • Biot, M. A., & Willis, D. G. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601.

    Google Scholar 

  • Brajanovski, M., Gurevich, B., & Schoenberg, M. (2005). A model for P-wave attenuation and dispersion in a porous medium permeated by aligned fractures. Geophysical Journal International, 163(1), 372–384.

    Article  Google Scholar 

  • Brajanovski, M., Müller, T. M., & Gurevich, B. (2006). Characteristic frequencies of seismic attenuation due to wave-induced fluid flow in fractured porous media. Geophysical Journal International, 166(2), 574–578.

    Article  Google Scholar 

  • Brown, L., & Gurevich, B. (2004). Frequency-dependent seismic anisotropy of porous rocks with penny-shaped cracks. Exploration Geophysics, 35(2), 111–115.

    Article  Google Scholar 

  • Carcione, J. M., & Picotti, S. (2006). P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties. Geophysics, 71(3), O1–O8.

    Article  Google Scholar 

  • Chapman, M. (2003). Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophysical Prospecting, 51(5), 369–379.

    Article  Google Scholar 

  • Dvorkin, J., Mavko, D., & Nur, A. (1995). Squirt flow in fully saturated rocks. Geophysics, 60, 97–107.

    Article  Google Scholar 

  • Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. In Proceedings of the Royal Society of London a mathematical, physical and engineering sciences (Vol. 241, pp. 376–396). London: The Royal Society.

  • Far, M. E., Sayers, C. M., Thomsen, L., Han, D. H., & Castagna, J. P. (2013). Seismic characterization of naturally fractured reservoirs using amplitude versus offset and azimuth analysis. Geophysical Prospecting, 61(2), 427–447.

    Article  Google Scholar 

  • Galvin, R. J., & Gurevich, B. (2006). Interaction of an elastic wave with a circular crack in a fluid-saturated porous medium. Applied Physics Letters, 88, 061918.

    Article  Google Scholar 

  • Gassmann, F. (1951). Über die Elastizität poröser Medien. Vierteljahrsschrder der Naturforschenden Gesselschaft in Zürich, 96, 1–23.

    Google Scholar 

  • Guéguen, Y., & Kachanov, M. (2011). Effective elastic properties of cracked and porous rocks. In Mechanics of crustal rocks, CISM Courses and Lectures (Vol. 533). Berlin: Springer.

  • Guéguen, Y., & Sarout, J. (2009). Crack-induced anisotropy in crustal rocks: predicted dry and fluid-saturated Thomsen’s parameters. Physics of the Earth and Planetary Interiors, 172(1), 116–124.

    Article  Google Scholar 

  • Guéguen, Y., & Sarout, J. (2011). Characteristics of anisotropy and dispersion in cracked medium. Tectonophysics, 503(1), 165–172.

    Article  Google Scholar 

  • Gurevich, B. (2003). Elastic properties of saturated porous rocks with aligned fractures. Journal of Applied Geophysics, 54(3), 203–218.

    Article  Google Scholar 

  • Gurevich, B., Brajanovski, M., Galvin, R. J., Müller, T. M., & Toms-Stewart, J. (2009). P-wave dispersion and attenuation in fractured and porous reservoirs—poroelasticity approach. Geophysical Prospecting, 57(2), 225–237.

    Article  Google Scholar 

  • Gurevich, B., Galvin, R. J., Brajanovski, M., Müller, T. M., & Lambert, G. (2007). Fluid substitution, dispersion and attenuation in fractured and porous reservoirs—Insights from new rock physics models. Leading Edge, 26(9), 1162–1168.

    Article  Google Scholar 

  • Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal of the Royal Astronomical Society, 64, 133–150.

    Article  Google Scholar 

  • Hudson, J. A., Liu, E., & Crampin, S. (1996). The mechanical properties of materials with interconnected cracks and pores. Geophysical Journal International, 124(1), 105–112.

    Article  Google Scholar 

  • Hudson, J. A., Pointer, T., & Liu, E. (2001). Effective-medium theories for fluid-saturated materials with aligned cracks. Geophysical Prospecting, 49(5), 509–522.

    Article  Google Scholar 

  • Jakobsen, M., Hudson, J. A., & Johansen, T. A. (2003). T-matrix approach to shale acoustics. Geophysical Journal International, 154(2), 533–558.

    Article  Google Scholar 

  • Johnson, D. L. (2001). Theory of frequency dependent acoustics in patchy-saturated porous media. Journal of the Acoustic Society of America, 110(2), 682–694.

    Article  Google Scholar 

  • Kachanov, M. (1980). Continuum model of medium with cracks. Journal of the Engineering Mechanics Division, 106, 1039–1051.

    Google Scholar 

  • Keller, J. B. (1964). Stochastic equations and wave propagation in random media. Proceedings of Symposia in Applied Mathematics, 16, 145–170.

    Article  Google Scholar 

  • Krief, M., Garat, J., Stellingwerff, J., & Ventre, J. (1990). A petrophysical interpretation using the velocities of P and S waves (full-wave sonic). The Log Analyst, 5, 355–369.

    Google Scholar 

  • Lambert, G., Gurevich, B., & Brajanovski, M. (2006). Attenuation and dispersion of p-waves in porous rocks with planar fractures: Comparison of theory and numerical simulations. Geophysics, 71, N41–N45.

    Article  Google Scholar 

  • Le Ravalec, M., & Guéguen, Y. (1996). High- and low-frequency elastic moduli for a saturated porous/cracked rock-differential self-consistent and poroelastic theories. Geophysics, 61(4), 1080–1094.

    Article  Google Scholar 

  • Liu, E. (2013). Seismic fracture characterization: Concepts and practical applications. Cambridge: Academic Press.

  • Liu, E., Hudson, J. A., & Pointer, T. (2000). Equivalent medium representation of fractured rock. Journal Geophysical Research, 105(B2), 2981–3000.

    Article  Google Scholar 

  • Lubbe, R., Sothcott, J., Worthington, M. H., & McCann, C. (2008). Laboratory estimates of normal and shear fracture compliance. Geophysical Prospecting, 56(2), 239–247.

    Article  Google Scholar 

  • Maultzsch, S., Chapman, M., Liu, E., & Li, X. Y. (2003). Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements. Geophysical Prospecting, 51(5), 381–392.

    Article  Google Scholar 

  • Mavko, G., Mukerji, T., & Dvorkin, J. (1998). The Rock physics handbook: Tools for seismic analysis of porous media. Cambridge: Cambridge University Press.

  • Müller, T. M., Gurevich, B., & Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review. Geophysics, 75(5), 75A147–75A164.

    Article  Google Scholar 

  • Müller, T. M., & Rothert, E. (2006). Seismic attenuation due to wave-induced flow: Why Q in random structures scales differently. Geophysical Research Letters, 33(16), L16305.

    Article  Google Scholar 

  • Nakagawa, S., & Schoenberg, M. A. (2007). Poroelastic modeling of seismic boundary conditions across a fracture. Journal of the Acoustic Society of America, 122(2), 831–847.

    Article  Google Scholar 

  • Nelson, R. A. (2001). Geologic analysis of naturally fractured reservoirs (2nd ed.). London: Butterworth-Heinemann.

  • Norris, A. N. (1993). Low-frequency dispersion and attenuation in partially saturated rocks. Journal of the Acoustic Society of America, 94(1), 359–370.

    Article  Google Scholar 

  • O’Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. Journal Geophysical Research, 79(35), 5412–5426.

    Article  Google Scholar 

  • Pride, S. R. (2005). Relationships between seismic and hydrological properties. In Hydrogeophysics (pp. 253–290). Netherlands: Springer.

  • Pride, S. R., Berryman, J. G., & Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research Solid Earth, 109(B1).

  • Sarout, J., & Guéguen, Y. (2008). Anisotropy of elastic wave velocities in deformed shales: Part 2-modeling results. Geophysics, 73, D91–D103.

    Article  Google Scholar 

  • Sayers, C. M. (1991). Fluid flow in a porous medium containing partially closed fractures. Transport in Porous Media, 6(3), 331–336.

    Article  Google Scholar 

  • Sayers, C. M., & Kachanov, M. (1995). Microcrack-induced elastic wave anisotropy of brittle rocks. Journal Geophysical Research, 100(B3), 4149–4156.

    Article  Google Scholar 

  • Sayers, C. M., Taleghani, A. D., & Adachi, J. (2009). The effect of mineralization on the ratio of normal to tangential compliance of fractures. Geophysical Prospecting, 57(3), 439–446.

    Article  Google Scholar 

  • Schoenberg, M., & Sayers, C.M. (1995). Seismic anisotropy of fractured rock. Geophysics, 60(1), 204–211.

    Article  Google Scholar 

  • Schoenberg, M. (1980). Elastic wave behavior across linear slip interfaces. Journal of the Acoustic Society of America, 68(5), 1516–1521.

    Article  Google Scholar 

  • Skempton, A. W. (1954). The pore-pressure coefficients A and B. Geotechnique, 4(4), 143–147.

    Article  Google Scholar 

  • Tang, X. M., & Cheng, C. H. (1989). A dynamic model for fluid flow in open borehole fractures. Journal Geophysical Research, 94(B6), 7567–7576.

    Article  Google Scholar 

  • Thomsen, L. (1995). Elastic anisotropy due to aligned cracks in porous rock. Geophysical Prospecting, 43, 805–829.

    Article  Google Scholar 

  • Tod, S. R. (2001). The effects on seismic waves of interconnected nearly aligned cracks. Geophysical Journal International, 146, 249–263.

    Article  Google Scholar 

  • Verdon, J. P., Angus, D. A., Michael, K. J., & Hall, S. A. (2008). The effect of microstructure and nonlinear stress on anisotropic seismic velocities. Geophysics, 73(4), D41–D51.

    Article  Google Scholar 

  • Verdon, J. P., & Wüstefeld, A. (2013). Measurement of the normal/tangential fracture compliance ratio (Z n/Z t) during hydraulic fracture stimulation using S-wave splitting data. Geophysical Prospecting, 61(s1), 461–475.

    Article  Google Scholar 

  • Wang, H. F. (2000). Theory of linear poroelasticity with application to geomechanics and hydrogeology. Princeton: Princeton University Press.

  • Wang, D. (2014). Theory of elastic waves inheterogeneous fractured porous media [in Chinese with English abstract]. Ph. D. Thesis, University of Chinese Academy of Sciences.

  • Wang, D., Wang, L. J., & Ding, P. B. (2016). The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective. Ultrasonics, 70, 266–274.

    Article  Google Scholar 

  • Wang, D., Wang, L. J., & Zhang, M. G. (2014). Analysis of the attenuation characteristics of an elastic wave due to the wave-induced fluid flow in fractured porous media. Chinese Physics Letters, 31(4), 044301.

    Article  Google Scholar 

  • Wang, D., & Zhang, M. G. (2014). Elastic wave propagation characteristics under anisotropic squirt-flow condition. Acta Physica Sinica, 63(6), 69101. (in Chinese with English abstract).

    Google Scholar 

  • White, J. E. (1975). Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40, 224–232.

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for helping the authors improve the original manuscript. This work is financially supported by the National Basic Research Program of China (973 Program, Grant No. 2014CB239201), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05035-001), SINOPEC Research Program (Grant No. P15104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang.

Appendices

Appendix 1

1.1 Frequency Dependence of Im[Z n]

The frequency characteristics of Im[Z n] (attenuation) are associated with the pressure equilibrium process. In this paper, the wave attenuation is controlled two diffusion systems corresponding two characteristic lengths that are fracture spacing and fracture thickness, respectively.

When ω → 0, Eq. (3) can be written as

$$G = \frac{ - 1}{{\left( {2 + \sqrt {\frac{i\omega }{{D_{\text{m}} }}} h_{\text{m}} } \right)\frac{{\frac{{\kappa_{\text{c}} }}{{D_{\text{c}} }}h_{\text{c}} }}{{\frac{{\kappa_{\text{m}} }}{{D_{\text{m}} }}h_{\text{m}} }} + \left( {2 + \sqrt {\frac{i\omega }{{D_{\text{c}} }}} h_{\text{c}} } \right)}},$$
(26)

Using the values in Table 1 for the physical parameters introduced this paper leads to the inequality

$$\xi = \frac{{\frac{{\kappa_{\text{c}} }}{{D_{\text{c}} }}h_{\text{c}} }}{{\frac{{\kappa_{\text{m}} }}{{D_{\text{m}} }}h_{\text{m}} }} \ll 1,$$
(27)

We can then derive the imaginary part of the compliance

$$\begin{aligned} \text{Im} [Z_{\text{n}} ] &= \text{Im} \left[ { - \frac{{h_{\text{c}} }}{{\psi M_{\text{c}} \alpha_{\text{c}} }}\frac{{ - 2\left( {\frac{1}{2}\sqrt {\frac{i\omega }{{D_{\text{c}} }}} h_{\text{c}} + 1} \right)}}{{\left( {2 + \sqrt {\frac{i\omega }{{D_{\text{m}} }}} h_{\text{m}} } \right)\xi + \left( {2 + \sqrt {\frac{i\omega }{{D_{\text{c}} }}} h_{\text{c}} } \right)}}} \right] \hfill \\ &= \omega \frac{{h_{\text{c}} }}{{\psi M_{\text{c}} \alpha_{\text{c}} }}\frac{1}{{4D_{\text{m}} \xi h_{\text{m}} }} \hfill \\ \end{aligned}$$
(28)

This means the low-frequency asymptote of the compliance, proportional to frequency. Additionally, the intermediate segment of Im[Z n] regime becomes broader for smaller fracture thickness. When h c → 0 for a fixed (but finite) frequency,

$$\frac{2}{{h_{\text{c}} \sqrt {\frac{i\omega }{{D_{\text{c}} }}} }}\left( {{\text{e}}^{{\sqrt {\frac{i\omega }{{D_{\text{c}} }}} h_{\text{c}} }} - 1} \right) \gg \frac{{4\kappa_{\text{c}} M_{\text{c}} }}{{i\omega \eta h_{\text{c}} }}\left( {{\text{e}}^{{\sqrt {\frac{i\omega }{{D_{\text{c}} }}} \frac{{h_{\text{c}} }}{2}}} - 1} \right)^{2} .$$
(29)

Then G = −1/2, \(\psi = \frac{{K_{\text{m}}^{\text{sat}} C_{\text{c}} }}{{\alpha_{\text{m}} M_{\text{m}} C_{\text{c}} - \alpha_{\text{c}} M_{\text{c}} C_{\text{m}} }}\), \(\lim_{{h_{\text{c}} \to 0}} M_{\text{c}} = \lim_{{h_{\text{c}} \to 0}} C_{\text{c}}\) and a c = 1. So Im[Z n] is given by

$$\text{Im} [Z_{\text{n}} ] \approx \text{Im} \left[ { - \frac{{h_{\text{c}} }}{{M_{\text{c}} \alpha_{\text{c}} }}\frac{1}{\psi }\frac{ - 1}{{h_{\text{c}} \sqrt {\frac{i\omega }{{D_{\text{c}} }}} }}\left( {h_{\text{c}} \sqrt {\frac{i\omega }{{D_{\text{c}} }}} + \frac{{h_{\text{c}}^{2} \frac{i\omega }{{D_{\text{c}} }}}}{2}} \right)} \right].$$
(30)

Thereby, Eq. (30) reduces to a formula in a frequency-dependent form

$$\text{Im} [Z_{\text{n}} ] = \sqrt \omega \frac{{\alpha_{\text{m}} M_{\text{m}} - C_{\text{m}} }}{{K_{\text{m}}^{\text{sat}} C_{\text{c}} }}h_{\text{c}}^{2} \frac{1}{{2\sqrt {2D_{\text{c}} } }}.$$
(31)

That is, the imaginary part of the compliance is proportional to ω 1/2 in the intermediate frequency band. Finally, when ω → ∞, the following inequality can be obtained

$$\frac{2}{{h_{\text{c}} \sqrt {\frac{i\omega }{{D_{\text{c}} }}} }}\left( {e^{{\sqrt {\frac{i\omega }{{D_{\text{c}} }}} h_{\text{c}} }} - 1} \right) \gg \frac{{4\kappa_{\text{c}} M_{\text{c}} }}{{i\omega \eta h_{\text{c}} }}\left( {e^{{\sqrt {\frac{i\omega }{{D_{\text{c}} }}} \frac{{h_{\text{c}} }}{2}}} - 1} \right)^{2}.$$
(32)

Thus, we find immediately that

$$\text{Im} [Z_{\text{n}} ] = \text{Im} \left[ {G\frac{2}{{h_{\text{c}} \sqrt {\frac{i\omega }{{D_{\text{c}} }}} }}{\text{e}}^{{h_{\text{c}} \sqrt {\frac{i\omega }{{D_{\text{c}} }}} }} } \right],$$
(33)

meanwhile, when ω → ∞

$$G \approx - \frac{1}{{\left( {\frac{{\kappa_{\text{c}} \sqrt {1/D_{\text{c}} } }}{{\kappa_{\text{m}} \sqrt {1/D_{\text{m}} } }} + 1} \right){\text{e}}^{{\sqrt {i\omega /D_{\text{c}} } r_{\text{c}} H}} }},$$
(34)

therefore,

$$\begin{aligned} \text{Im} [Z_{\text{n}} ] &= \text{Im} \left[ { - \frac{{h_{\text{c}} }}{{M_{\text{c}} \alpha_{\text{c}} }}\frac{1}{\psi }\text{Im} \left[ {\frac{1}{{\left( {\frac{{\kappa_{\text{c}} \sqrt {1/D_{\text{c}} } }}{{\kappa_{\text{m}} \sqrt {1/D_{\text{m}} } }} + 1} \right)e^{{\sqrt {i\omega /D_{\text{c}} } r_{\text{c}} H}} }}\frac{2}{{h_{\text{c}} \sqrt {\frac{i\omega }{{D_{\text{c}} }}} }}{\text{e}}^{{\sqrt {i\omega /D_{\text{c}} } h_{\text{c}} }} } \right]} \right] \hfill \\ &= \frac{2}{\sqrt \omega }\frac{{h_{\text{c}} }}{{M_{\text{c}} \alpha_{\text{c}} }}\frac{1}{\psi }\frac{1}{{h_{\text{c}} \sqrt {\frac{1}{{D_{\text{c}} }}} \left( {\frac{{\kappa_{\text{c}} \sqrt {1/D_{\text{c}} } }}{{\kappa_{\text{m}} \sqrt {1/D_{\text{m}} } }} + 1} \right)}} \hfill \\ \end{aligned}$$
(35)

The imaginary part of the compliance is proportional to ω −1/2.

Appendix 2

2.1 Fluid Flux Ratio Normal to Fracture

As for the derivation of Eqs. (13), fluid flow between the fractures and the background pores can be seen as an inter-coupling process controlled simultaneously by the hydrologic properties of fractures and of the background. Combining Eqs. (13) and Darcy’s law \(V_{\text{flow}} = - \nabla P\frac{\kappa }{\eta }\), we can obtain the fluid flux equation

$$S = - \frac{{\kappa_{\text{c}} }}{\eta }A_{2} \left( {{\text{e}}^{{\sqrt {\frac{i\omega }{{D_{\text{c}} }}} h_{\text{c}} /2}} - 1} \right)^{2} + \frac{{\kappa_{\text{m}} }}{\eta }B_{1} \left( {{\text{e}}^{{\sqrt {\frac{i\omega }{{D_{\text{m}} }}} h_{\text{m}} /2}} - 1} \right)^{2} ,$$
(36)

Then the flux ratio between fracture and matrix \(\varsigma = \frac{{S_{\text{c}} }}{{S_{\text{m}} }}\) is

$$\varsigma = - \frac{{\kappa_{\text{c}} }}{{\kappa_{\text{m}} }}\frac{{A_{2} }}{{B_{1} }}\frac{{\left( {{\text{e}}^{{R_{\text{c}} h_{\text{c}} /2}} - 1} \right)^{2} }}{{\left( {{\text{e}}^{{R_{\text{m}} h_{\text{m}} /2}} - 1} \right)^{2} }},$$
(37)

In the low-frequency limit, the flux ratio is h c/h m ≪ 1 according to Eq  (36). The pore pressure gradient is a constant in the whole pore structure. The flux ratio is \(\sqrt {D_{\text{c}} /D_{\text{m}} } \gg 1\) in the high-frequency limit, indicating that the WIFF only occurs near the fractures planes. Therefore, we can conclude that the total flux mainly comes from host rock in the low-frequency limit while from fracture in the high-frequency limit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Qu, SL., Ding, PB. et al. Analysis of Dynamic Fracture Compliance Based on Poroelastic Theory. Part I: Model Formulation and Analytical Expressions. Pure Appl. Geophys. 174, 2103–2120 (2017). https://doi.org/10.1007/s00024-017-1511-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1511-4

Keywords

Navigation