Skip to main content
Log in

Experimental study of poromechanical behavior of saturated claystone under triaxial compression

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents experimental results of drained and undrained triaxial compression tests of saturated Meuse–Haute/Marne claystone. The emphasis is to study the evolution of pore pressure with growth of microcracks and the effect of pore pressure on mechanical behavior. Basic mechanical responses are first investigated through drained triaxial compression tests, showing nonlinear stress strain relations, volumetric dilatancy and pressure sensitivity. In undrained triaxial compression tests, the pore pressure exhibits a transition from increase to decrease due to the transition from volumetric compressibility to dilatancy caused by the growth of microcracks. The failure surfaces, determined by total stress and Terzaghi’s effective stress under undrained condition, are compared with the one under drained condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abuel-Naga HM, Bergado DT, Bouazza A (2007) Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng Geol 89:144–154

    Article  Google Scholar 

  2. Baud P, Schubnel A, Wong TF (1999) Dilatancy, compaction, and failure mode in Solnhofen limestone. J Geophys Res 105(B8):19289–19303

    Article  Google Scholar 

  3. Bemer E, Longuemare P, Vincké O (2004) Poroelastic parameters of Meuse/Haute Marne claystones: effect of loading and saturation states. Appl Clay Sci 26:359–366

    Article  Google Scholar 

  4. Bishop W (1973) The influence of an undrained change in stress on the pore pressure in porous media of low compressibility. Geotechnique 23:435–442

    Article  Google Scholar 

  5. Chiarelli AS, Shao JF, Hoteit N (2003) Modelling of elastoplastic damage behaviour of a claystone. Int J Plast 19:23–45

    Article  MATH  Google Scholar 

  6. Delay J, Trouiller A, Lavanchy J-M (2006) Propriétés hydrodynamiques du Callovo-Oxfordien dans l’Est du bassin de Paris: comparaison des résultats obtenus selon différentes approches. Comptes Rendus Geosci 338:892

    Article  Google Scholar 

  7. Escoffier S (2002) Caractérisation expérimentale du comportement hydromécanique des argilites de Meuse/Haute–Marne, doctorat de l’INPL

  8. Fredrich JT, Evans B, Wong TF (1989) Micromechanics of the brittle to plastic transition in Carrara marbe. J Geophys Res 94:4129–4145

    Article  Google Scholar 

  9. Ghabezloo S, Sulem J (2010) Effect of the volume of the drainage system on the measurement of undrained thermo-poro-elastic parameters. Int J Rock Mech Min Sci 47:60–68

    Article  Google Scholar 

  10. Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Article  Google Scholar 

  11. Homand F, Giraud A, Escoffier S, Koriche A, Hoxha D (2004) Permeability determination of a deep argillite in saturated and partially saturated conditions. Int J Heat Mass Transf 47:3517–3531

    Article  Google Scholar 

  12. Homand F, Shao J, Giraud A, Auvray C, Hoxha D (2006) Pétrofabrique et propriété mécaniques des argilites. Comptes Rendues Geosci 338(12–13):882–891

    Article  Google Scholar 

  13. Horii H, Nemat-Nasser S (1985) Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90(B4):3105–3125

    Article  Google Scholar 

  14. Hu DW, Zhou H, Zhang F, Shao JF (2010) Evolution of poroelastic properties and permeability in damaged sandstone. Int J Rock Mech Min Sci 47(6):962–973

    Article  Google Scholar 

  15. Hueckel T, Pellegrini R (1991) Thermoplastic modeling of undrained failure of saturated clay due to heating. Soils Found 31(3):1–16

    Article  Google Scholar 

  16. Ismail IAH, Murrell SAF (1976) Dilatancy and the strength of rocks containing pore water under undrained conditions. Geophys J R Astr S44:107–134

    Article  Google Scholar 

  17. Koriche A (2004) Caractérisation du comportement couplé des argilites de Meuse/Haute–Marne aux états saturé et partiellement saturé, doctorat de l’INPL

  18. Mohajerani M, Delage P, Monfared M, Sulem J, Tang AM, Gatmiri B (2011) Oedometer compression and swelling behaviour of the Callovo–Oxfordian argillite. Int J Rock Mech Min Sci 48:606–615

    Article  Google Scholar 

  19. Monfared M, Delage P, Sulem J, Mohajerani M, Tang AM, De Laure E (2011) A new hollow cylinder triaxial cell to study the behavior of geo-materials with low permeability. Int J Rock Mech Min Sci 48(4):637–649

    Article  Google Scholar 

  20. Monfared M, Sulem J, Delage P, Mohajerani M (2011b) On the THM behaviour of a sheared Boom clay sample: application to the behaviour and sealing properties of the EDZ, Engineering Geology, in press

  21. Moore DE, Lockner DA (1995) The role of microcracking in shear fracture propagation in granite. J Struct Geol 17:95–114

    Article  Google Scholar 

  22. Naumann M, Hunsche U, Schulze O (2007) Experimental investigations on anisotropy in dilatancy, failure and creep of Opalinus clay. Phys Chem Earth 32:889–895

    Article  Google Scholar 

  23. Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behaviour of Tournemire shale. Int J Rock Mech Min Sci 34(1):3–16

    Article  Google Scholar 

  24. Olchitzky E (2002) Couplage hydromécanique et perméabilité d’une argile gonflante non saturée sous sollicitations hydriques et thermiques courbe de sorption et perméabilité à l’eau, PhD Thesis (in French), ENPC, Paris

  25. Olsson W (1995) Development of anisotropy in the incremental shear moduli for rock undergoing inelastic deformation. Mech Mater 21:231–242

    Article  Google Scholar 

  26. Popp T, Salzer K (2007) Anisotropy of seismic and mechanical properties of Opalinus clay during triaxial deformation in a multi-anvil apparatus. Phys Chem Earth Parts A/B/C 32(8–14):879–888

    Article  Google Scholar 

  27. Sammartino S, Bouchet D, Parneix J.-C (2001) Construction d’un modèle conceptuel d’organisation de la porosité et de la minéralogie dans les argilites du site de Bure, rapport Andra DRP0ERM 01-018

  28. Schmitt DR, Zoback MD (1992) Diminished pore pressure in low-porosity crystalline rock under tensional failure: apparent strengthening by dilatancy. J Geophys Res 97:273–288

    Article  Google Scholar 

  29. Schulze O, Popp T, Kern H (2001) Development of damage and permeability in deforming rock salt. Eng Geol 61:163–180

    Article  Google Scholar 

  30. Secq J (2006) Collier de mesure de la déformation latérale d’une éprouvette lors d’essais de compression, notamment unaxiale ou triaxiale collier à lame. French Patent No. 0505204

  31. Shao JF (1998) Poroelastic behaviour of brittle rock materials with anisotropic damage. Mech Mater 30:41–53

    Article  Google Scholar 

  32. Shao JF, Rudnicki JW (2000) A microcrack-based continuous damage model for brittle geomaterials. Mech Mater 32:607–619

    Article  Google Scholar 

  33. Souley M, Homand F, Pepa S, Hoxha D (2001) Damage-induced permeability changes in granite: a case example at the URL in Canada. Int J Rock Mech Min Sci 38:297–310

    Article  Google Scholar 

  34. Steif PS (1984) Crack extension under compressive loading. Eng Fract Mech 20(3):463–473

    Article  Google Scholar 

  35. Suzuki K, Oda M, Yamazaki M, Kuwahara T (1998) Permeability changes in granite with crack growth during immersion in hot water. Int J Rock Mech Min Sci 35(7):907–921

    Article  Google Scholar 

  36. Tapponnier P, Brace WF (1976) Development of stress-induced microcracks in Westerly granite. Int J Rock Mech Min Sci Geomech Abstr 13:103–112

    Article  Google Scholar 

  37. Vincké O, Boutéca M, Longuemarre P (1998) Investigation of the poromechanical behavior of shales in elastic domain. SPE/ISMR 475:515–520

    Google Scholar 

  38. Wileveau Y, Cornet FH, Desroches J, Blumling P (2007) Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32(8–14):866–878

    Article  Google Scholar 

  39. Wong T-F (1982) Micromechanics of faulting in Westerly granite. Int J Rock Mech Min Sci Geomech Abstr 19:49–64

    Article  Google Scholar 

  40. Wong T-F, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res 102(B2):3009–3025

    Article  Google Scholar 

  41. Wu B, Tan CP, Aoki T (1997) Specially designed techniques for conducting consolidated undrained triaxial tests on low permeability shales. Int J Rock Mech Min Sci 34(3–4):336

    Google Scholar 

  42. Zhang C, Rothfuchs T (2004) Experimental study of the hydro-mechanical behaviour of the Callovo–Oxfordian argillite. Appl Clay Sci 26:325–336

    Article  Google Scholar 

  43. Zhang CL, Rothfuchs T, Su K et al (2007) Experimental study of the thermo-hydro-mechanical behaviour of indurated clays. Phys Chem Earth Parts A/B/C 32(8–14):957–965

    Article  Google Scholar 

  44. Zhu W, Wong T-F (1997) The transition from brittle faulting to faulting to cataclastic flow: permeability evolution. J Geophys Res 102(B2):3027–3041

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the French National Agency for radioactive waste management (ANDRA) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Fu Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, D.W., Zhang, F. & Shao, J.F. Experimental study of poromechanical behavior of saturated claystone under triaxial compression. Acta Geotech. 9, 207–214 (2014). https://doi.org/10.1007/s11440-013-0259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-013-0259-y

Keywords

Navigation