Skip to main content
Log in

An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek–Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters σc and m i . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

m i :

Strength parameters of the original HB criterion

m b , s, a :

Strength parameters of the generalized HB criterion

σ c :

Uniaxial compression strength of intact rock

σ t :

Uniaxial tensile strength of intact rock

GSI:

Geological Strength Index of rock masses

D :

Disturbance of rock masses

\(\sigma_{ij}\) :

Stress tensor in normal stress space

\(\bar{\sigma }_{ij}\) :

Stress tensor in transformed stress space

\(\sigma_{i} \;(i = 1,2,3)\) :

Principal stress at failure in normal stress space

\(\sigma_{{ 1 {\text{c}}}}\), \(\sigma_{{ 3 {\text{c}}}}\) :

The first and third principal stresses under triaxial compression condition

\(\sigma_{{ 1 {\text{t}}}}\), \(\sigma_{{ 3 {\text{t}}}}\) :

The first and third principal stresses under triaxial extension condition

\(\hat{\sigma }_{i} \;(i = 1,2,3)\) :

Principal stress at failure in characteristic stress space

p, q :

Mean stress and generalized shear stress in normal stress space

p c, q c :

Mean stress and generalized shear stress under triaxial compression condition

p t, q t :

Mean stress and generalized shear stress under triaxial extension condition

\(\hat{p}\), \(\hat{q}\) :

Mean stress and generalized shear stress in characteristic stress space

\(\bar{p}\), \(\bar{q}\) :

Mean stress and generalized shear stress in transformed stress space

p r :

Reference stress

M β :

Ratio of \(\hat{q}\) to \(\hat{p}\)

M f :

Ratio of \(\bar{q}\) to \(\bar{p}\) under triaxial compression condition

β :

Strength parameter of NUSC

M t :

Ratio of \(q_{\text{t}}\) to \(q_{\text{c}}\)

F :

Fitness function

n :

Number of test series with a certain σ3 for a specific rock

m :

Number of test series for a specific rock

DC:

Determination coefficient

\(q_{i}^{\text{test}}\) :

Experimental value of the generalized shear stress

\(q_{i}^{\text{calc}}\) :

Predicted value of the generalized shear stress

\(\bar{q}_{\text{test}}\) :

Mean value of \(q_{i}^{\text{test}}\)

φ c :

Friction angle of rock

κ :

Hardening function

κ o :

Initial hardening rate

σ, \(\tilde{\varvec{\sigma }}\) :

Nominal and effective stress tensor

ε, ε p :

Total and plastic strain tensor

D e :

Elastic stiffness tensor

\(\varepsilon_{ij}^{p}\) :

Plastic strain component

\(\varepsilon_{\text{v}}^{p}\) :

Plastic volume strain

γ p :

Equivalent plastic shear strain

γ pf :

Equivalent plastic shear strain corresponding to the peak strength

A :

Equivalent plastic shear strain for the mean strength of σc/3

σ o :

Three-dimensional tensile strength

f d :

Damage loading function

κ d :

Damage-driving variable

g d :

Damage function

χ 1 :

Softening ductility measure

d :

Damage variable

b 1 :

Parameter controlling the slope of the softening curve

b 2 :

Parameter controlling the values of χ1

References

  • Al-Ajmi AM, Zimmerman RW (2005) Relation between the Mogi and the Coulomb failure criteria. Int J Rock Mech Min Sci 42(3):431–439

    Article  Google Scholar 

  • Al-Rub RKA, Kim SM (2010) Computational applications of a coupled plasticity–damage constitutive model for simulating plain concrete fracture. Eng Fract Mech 77(10):1577–1603

    Article  Google Scholar 

  • Benz T, Schwab R, Kauther RA, Vermeer PA (2008) A Hoek–Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci 45(2):210–222

    Article  Google Scholar 

  • Brown ET (1993) The nature and fundamentals of rock engineering. In: Hudson JA, Brown ET, Fairhurst C, Hoek E (eds) Compressive rock engineering—principle, practice and projects, vol 1. Pergamon Press, Oxford, pp 1–23

    Google Scholar 

  • Cai M (2010) Practical estimates of tensile strength and Hoek–Brown strength parameter mi of brittle rocks. Rock Mech Rock Eng 43(2):167–184

    Article  Google Scholar 

  • Chang C, Haimson B (2000) True triaxial strength and deformability of the German Continental Deep Drilling Program (KTB) deep hole amphibolite. J Geophys Res 105(B8):18999–19013

    Article  Google Scholar 

  • Chen L, Shao JF, Huang HW (2010) Coupled elastoplastic damage modeling of anisotropic rocks. Comput Geotech 37(1):187–194

    Article  Google Scholar 

  • Cheng X, Wang J (2016) An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays. Geomech Eng 11(3):325–343

    Article  Google Scholar 

  • Chiarelli AS, Shao JF, Hoteit N (2003) Modeling of elastoplastic damage behavior of a claystone. Int J Plast 19(1):23–45

    Article  Google Scholar 

  • Cicekli U, Voyiadjis GZ, Al-Rub RKA (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plast 23(10):1874–1900

    Article  Google Scholar 

  • Colak K, Unlu T (2004) Effect of transverse anisotropy on the Hoek–Brown strength parameter ‘mi’ for intact rocks. Int J Rock Mech Min Sci 41(6):1045–1052

    Article  Google Scholar 

  • Colmenares LB, Zoback MD (2002) A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min Sci 39(6):695–729

    Article  Google Scholar 

  • Desai CS (2001) Mechanics of materials and interfaces: the disturbed state concept. CRC Press, New York

    Google Scholar 

  • Drucker DC, Prager W, Greenberg HJ (1952) Extended limit design theorems for continuous media. Q Appl Math 9(4):381–389

    Article  Google Scholar 

  • Du XL, Lu DC, Gong QM, Zhao M (2009) Nonlinear unified strength criterion for concrete under three-dimensional stress states. J Eng Mech 136(1):51–59

    Article  Google Scholar 

  • Eberhardt E (2012) The Hoek–Brown failure criterion. Rock Mech Rock Eng 45(6):981–988

    Article  Google Scholar 

  • Grassl P, Jirásek M (2006) Damage–plastic model for concrete failure. Int J Solids Struct 43(22):7166–7196

    Article  Google Scholar 

  • Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci 37(1):285–296

    Article  Google Scholar 

  • Haimson B, Rudnicki JW (2010) The effect of the intermediate principal stress on fault formation and fault angle in siltstone. J Struct Geol 32(11):1701–1711

    Article  Google Scholar 

  • Hoek E (2006) Rock engineering-course notes by Evert Hoek, 2006 edn. http://www.rocscience.com/hoek/PracticalRockEngineering.asp

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Article  Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown failure criterion, 2002 edn. In: Proceedings of NARMS-Tac, vol 1, pp 267–273

  • Hu C, Liu H, Huang W (2012) Anisotropic bounding-surface plasticity model for the cyclic shakedown and degradation of saturated clay. Comput Geotech 44:34–47

    Article  Google Scholar 

  • Jaiswal A, Shrivastva BK (2012) A generalized three-dimensional failure criterion for rock masses. J Rock Mech Geotech Eng 4(4):333–343

    Article  Google Scholar 

  • Jia Y, Song XC, Duveau G, Su K, Shao JF (2007) Elastoplastic damage modelling of argillite in partially saturated condition and application. Phys Chem Earth 32(8):656–666

    Article  Google Scholar 

  • Jiang H, Xie YL (2012) A new three-dimensional Hoek–Brown strength criterion. Acta Mech Sin 28(2):393–406

    Article  Google Scholar 

  • Jiang H, Zhao J (2015) A simple three-dimensional failure criterion for rocks based on the Hoek–Brown criterion. Rock Mech Rock Eng 48(5):1807–1819

    Article  Google Scholar 

  • Jiang H, Wang X, Xie Y (2011) New strength criteria for rocks under polyaxial compression. Can Geotech J 48(8):1233–1245

    Article  Google Scholar 

  • Kawamoto T, Ichikawa Y, Kyoya T (1988) Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory. Int J Numer Anal Methods 12(1):1–30

    Article  Google Scholar 

  • Kohgo Y, Nakano M, Miyazaki T (1993) Verification of the generalized elastoplastic model for unsaturated soils. Soils Found 33(4):64–73

    Article  Google Scholar 

  • Lade PV (1997) Modelling the strengths of engineering materials in three dimensions. Mech Cohe Frict Mater 2(4):339–356

    Article  Google Scholar 

  • Lee YK, Pietruszczak S, Choi BH (2012) Failure criteria for rocks based on smooth approximations to Mohr–Coulomb and Hoek–Brown failure functions. Int J Rock Mech Min Sci 56:146–160

    Google Scholar 

  • Li X, Cao WG, Su YH (2012) A statistical damage constitutive model for softening behavior of rocks. Eng Geol 143:1–17

    Article  Google Scholar 

  • Linker MF, Dieterich JH (1992) Effects of variable normal stress on rock friction: observations and constitutive equations. J Geophys Res 97(B4):4923–4940

    Article  Google Scholar 

  • Lu DC, Ma C, Du XL, Jin L, Gong QM (2016a) Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept. Int J Geomech 17:04016058

    Article  Google Scholar 

  • Lu DC, Du XL, Wang GS, Zhou AN, Li AK (2016b) A three-dimensional elastoplastic constitutive model for concrete. Comput Struct 163:41–55

    Article  Google Scholar 

  • Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. Proc Jpn Soc Civ Eng 232:59–70

    Article  Google Scholar 

  • Matsuoka H, Yao Y, Sun D (1999) The Cam-clay models revised by the SMP criterion. Soils Found 39(1):81–95

    Article  Google Scholar 

  • Melkoumian N, Priest SD, Hunt SP (2009) Further development of the three-dimensional Hoek–Brown yield criterion. Rock Mech Rock Eng 42(6):835–847

    Article  Google Scholar 

  • Mogi K (1967) Effect of the intermediate principal stress on rock failure. J Geophys Res 72(20):5117–5131

    Article  Google Scholar 

  • Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76(5):1255–1269

    Article  Google Scholar 

  • Mogi K (2007) Experimental rock mechanics. Taylor and Francis, London

    Google Scholar 

  • Pan XD, Hudson JA (1988) A simplified three dimensional Hoek–Brown yield criterion. In: ISRM international symposium. International Society for Rock Mechanics

  • Perras MA, Diederichs MS (2014) A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng 32(2):525–546

    Article  Google Scholar 

  • Priest SD (2005) Determination of shear strength and three-dimensional yield strength for the Hoek–Brown criterion. Rock Mech Rock Eng 38(4):299–327

    Article  Google Scholar 

  • Priest S (2012) Three-dimensional failure criteria based on the Hoek–Brown criterion. Rock Mech Rock Eng 45(6):989–993

    Article  Google Scholar 

  • Saksala T (2010) Damage–viscoplastic consistency model with a parabolic cap for rocks with brittle and ductile behavior under low-velocity impact loading. Int J Numer Anal Methods 34(13):1362–1386

    Article  Google Scholar 

  • Shao JF, Jia Y, Kondo D, Chiarelli AS (2006) A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mech Mater 38(3):218–232

    Article  Google Scholar 

  • Shen J, Karakus M (2014) Simplified method for estimating the Hoek–Brown constant for intact rocks. J Geotech Geoenviron Eng 140(6):04014025

    Article  Google Scholar 

  • Single B, Goel RK, Mehrotra VK, Garg SK, Allu MR (1998) Effect of intermediate principal stress on strength of anisotropic rock mass. Tunn Undergr Space Technol 13(1):71–79

    Article  Google Scholar 

  • Takahashi M, Koide H (1989) Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. In: ISRM international symposium. International Society for Rock Mechanics

  • Voyiadjis GZ, Taqieddin ZN, Kattan PI (2008) Anisotropic damage–plasticity model for concrete. Int J Plast 24(10):1946–1965

    Article  Google Scholar 

  • Xie N, Zhu QZ, Xu LH, Shao JF (2011) A micromechanics-based elastoplastic damage model for quasi-brittle rocks. Comput Geotech 38(8):970–977

    Article  Google Scholar 

  • Yao YP, Wang ND (2013) Transformed stress method for generalizing soil constitutive models. J Eng Mech 140(3):614–629

    Article  Google Scholar 

  • Yao YP, Zhou AN, Lu DC (2007) Extended transformed stress space for geomaterials and its application. J Eng Mech 133(10):1115–1123

    Article  Google Scholar 

  • Yoshimine M (2006) 3-D Coulomb’s failure criterion for various geomaterials. In: Geomechanics II: testing, modeling, and simulation, pp 71–86

  • You MQ (2009) True-triaxial strength criteria for rock. Int J Rock Mech Min Sci 46(1):115–127

    Article  Google Scholar 

  • Yu MH, Zan YW, Zhao J, Yoshimine M (2002) A unified strength criterion for rock material. Int J Rock Mech Min Sci 39(8):975–989

    Article  Google Scholar 

  • Zhang L (2008) A generalized three-dimensional Hoek–Brown strength criterion. Rock Mech Rock Eng 41(6):893–915

    Article  Google Scholar 

  • Zhang L, Zhu H (2007) Three-dimensional Hoek–Brown strength criterion for rocks. J Geotech Geoenviron 133(9):1128–1135

    Article  Google Scholar 

  • Zhang Q, Zhu HH, Zhang LY (2013) Modification of a generalized three-dimensional Hoek–Brown strength criterion. Int J Rock Mech Min Sci 59:80–96

    Google Scholar 

  • Zhou CY, Zhu FX (2010) An elasto-plastic damage constitutive model with double yield surfaces for saturated soft rock. Int J Rock Mech Min Sci 47(3):385–395

    Article  Google Scholar 

  • Zhou H, Jia Y, Shao JF (2008) A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks. Int J Rock Mech Min Sci 45(8):1237–1251

    Article  Google Scholar 

  • Zhou H, Bian HB, Jia Y, Shao JF (2013) Elastoplastic damage modeling the mechanical behavior of rock-like materials considering confining pressure dependency. Mech Res Commun 53:1–8

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Basic Research Program of China (2015CB057902), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51421005), the Beijing Municipal Natural Science Foundation (8164049) and the National Natural Science of China (51608015; 51678015). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhao, M., Du, X. et al. An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion. Rock Mech Rock Eng 51, 1413–1429 (2018). https://doi.org/10.1007/s00603-018-1417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1417-1

Keywords

Navigation