Skip to main content
Log in

A new three-dimensional Hoek-Brown strength criterion

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The Hoek-Brown (HB) strength criterion has been widely applied to the estimation of strength of intact rock and rock mass, while evolving ever since. However, negligence of the effect of the intermediate principal stress still remains in the criterion’s latest version. At the same time, several three-dimensional (3D) HB strength, which can takes into account the influence of the intermediate principal stress, have already been proposed, among which the 3D HB criterion proposed by Zhang and Zhu seems to be the most reasonable one. However, the Zhang 3D HB criterion may have problems with some stress path close to triaxial extension state because of the non-convexity characteristic of its failure surface. In this paper, a new 3D HB strength criterion is presented based on a generalized form of the HB criterion, which also considers the effect of the intermediate principal stress and inherits all the merits of the original version of the HB criterion. In addition, this new criterion can remedy to some extent the shortcomings observed in the Zhang 3D HB criterion. Polyaxial tests for five different rocks from published literatures are used for evaluating this new criterion and comparing it with the Zhang 3D HB criterion. The results show that this new criterion may over-predict or under-predict the polyaxial strength of rocks but the errors are relatively small, and similar results are also found for the Zhang 3D HB criterion, which one is better depends on the type of the rock under estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

σ i :

Effective principal stresses with i = 1, 2, 3

σ ci :

Uniaxial compressive strength of the intact rock material

m i :

Petrographic constant of the intact rock material

m b :

Petrographic constant of rock mass

s and a :

Parameters depend on the nature and the degree of fracturing of the rock mass

D :

Disturbance of rock mass

I GS :

Geological strength index

σm :

Hydrostatic stress

J2 :

Second invariant of deviator stress tensor

η :

Similarity angle (Eq. (4))

A and B :

Constants of yield function of 3D HB criterion (Eq. (8))

k :

Parameter determines shape on the octahedral plane of 3D HB criterion (Eq. (14))

n :

Number of test series for certain type of rock

y test i and y calc i :

Test and calculated data

y test :

Mean value of the test sample

R :

Maximum correlation coefficient (Eq. (25))

R SS and R MS :

Residual sum of squares and mean square of residual, respectively

σ1test and σ1calc :

Mayor test and calculated principal stress

ɛ i :

Error between σ1test and σ1calc

\(\bar \varepsilon _{abs}\) :

Average absolute prediction error

\(\bar \varepsilon _{ave}\) :

Average prediction error

References

  1. Hoek, E., Brown, E. T.: Empirical strength criterion for rock masses. Journal of Geotechnical Engineering ASCE 106(GT9), 1013–1035 (1980)

    Google Scholar 

  2. Hoek, E.: Strength of jointed rock masses, 23rd. Rankine Lecture. Géotechnique 33(3), 187–223 (1983) DOI:10.1680/geot.1983.33.3.187

    Article  Google Scholar 

  3. Hoek, E.: EstimatingMohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences 12(3), 227–229 (1990)

    Google Scholar 

  4. Hoek, E.: Strength of rock and rock masses. ISRM News Journal 2(2), 4–16 (1994)

    Google Scholar 

  5. Hoek, E., Brown, E. T.: Practical estimates of rockmass strength. International Journal of Rock Mechanics and Mining Sciences 34(8), 1165–1186 (1997) DOI:10.1016/S1365-1609(97)80069-X

    Article  Google Scholar 

  6. Hoek, E., Carranza-Torres, C., Corkum, B.: Hoek-Brown failure criterion -2002 edition. In: Hammah R. et al. eds, Proc. 5th North American Rock Mech. Symp. and 17th Tunneling. Assoc. of Canada Conf. NARMS-TAC 2002, Mining Innovation and Tech., Toronto, 267–273 (2002)

  7. Marinos, P., Hoek, E.: Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bulletin of Engineering Geology and the Environment 60(2), 85–92 (2001) DOI: 10.1007/s100640000090

    Article  Google Scholar 

  8. Martin, C. D., Maybee, W. G.: The strength of hard-rock pillars. International Journal of Rock Mechanics and Mining Sciences 37(8), 1239–1246 (2000) DOI:10.1016/S1365-1609(00)00032-0

    Article  Google Scholar 

  9. Yang, X. L., Liang, L., Yin, J. H.: Stability analysis of rock slopes with a modified Hoek-Brown failure criterion. International Journal for Numerical and Analytical Methods in Geomechanics 28(2), 181–190 (2004) DOI: 10.1002/nag.330

    Article  MATH  Google Scholar 

  10. Alemdag, S., Gurocak, Z., Solanki, P., et al.: Estimation of bearing capacity of basalts at the Atasu dam site, Turkey. Bulletin of Engineering Geology and the Environment 67, 79–85 (2008) DOI 10.1007/s10064-007-0112-3

    Article  Google Scholar 

  11. Al-Ajmi, A. M., Zimmerman, R. W.: Relation between the Mogi and the Coulomb failure criteria. International Journal of Rock Mechanics and Mining Sciences 42(3), 431–439 (2005) DOI: 10.1016/j.ijrmms.2004.11.004

    Article  Google Scholar 

  12. Chang, C., Haimson, B. C.: True triaxial strength and deformability of the German Continental deep drilling program (KTB) deep hole amphibolite. Journal of Geophysical Research 105(B8), 8999–9013 (2000) DOI: 10.1029/2000JB900184

    Article  Google Scholar 

  13. Colmenares, L. B., Zoback M. D.: A statistical evaluation of intact rock failure criterial constrained by polyaxial test data for five different rocks. International Journal of Rock Mechanics and Mining Sciences 39(6), 695–729 (2002) DOI: 10.1016/S1365-1609(02)00048-5

    Article  Google Scholar 

  14. Mogi K.: Fracture and flow of rocks under high triaxial compression. Journal of Geophysical Research 76(5), 1255–1269 (1971) DOI: 10.1029/JB076i005p01255

    Article  Google Scholar 

  15. Takahashi, M., Koide, H.: Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000m. In: Maury V. Fourmaintraux D., eds. Rock at Great Depth. Balkema, Rotterdam, 19–26 (1989)

    Google Scholar 

  16. Wang, R., Kemeny, J. M.: A new empirical criterion for rock under polyaxial compressive stresses. In: Daemen and Schultz eds. Rock Mechanics. Balkema, Rotterdam, 453–458 (1995)

  17. Pan, X. D., Hudson, J.: A simplified three dimensional Hoek-Brown yield criterion. In: Proceedings of the International Symposium on Rock Mechanics and Power Plants, Madrid, Spain. International Society for Rock Mechanics (ISRM), Lisboa, Portugal, 95–103 (1988)

    Google Scholar 

  18. Priest, S. D.: Determination of shear strength and threedimensional yield strength for the Hoek-Brown criterion. Rock Mechanics and Rock Engineering 38(4), 299–327 (2005) DOI:10.1007/s00603-005-0056-5

    Article  MathSciNet  Google Scholar 

  19. Melkoumian, N., Priest, S. D., Hunt S. P.: Further development of the three-dimensional Hoek-Brown yield criterion. Rock Mechanics and Rock Engineering 42, 835–847 (2008) DOI: 10.1007/s00603-008-0022-0

    Article  Google Scholar 

  20. Zhang, L., Zhu, H.: Three-dimensional Hoek-Brown strength criterion for rocks. Journal of Geotechnical and Geoenvironmental Engineering 133(9), 1128–1135 (2007) DOI: 10.1061/(ASCE)1090-0241(2007)133:9(1128)

    Article  Google Scholar 

  21. Benz, T., Schwab, R., Kauther, R. A., et al.: A Hoek-Brown criterion with intrinsic material strength factorization. International Journal of Rock Mechanics and Mining Sciences 45(2), 210–222 (2008) DOI: 10.1016/j.ijrmms.2007.05.003

    Article  Google Scholar 

  22. Jiang, H, Wang, X. W., Xie, Y. L.: New strength criteria for rocks under polyaxial compression. Canadian Geotechnical Journal 48(8), 1233–1245 (2011) DOI: 10.1139/T11-034

    Article  MathSciNet  Google Scholar 

  23. Zhang, L.: A generalized three-dimensional Hoek-Brown strength criterion. Rock Mechanics and Rock Engineering 41(4), 893–915 (2008) DOI:10.1007/s00603-008-0169-8

    Article  Google Scholar 

  24. Priest, S. D.: Comparisons between selected three-dimensional yield criteria applied to rock. Rock Mechanics and Rock Engineering 43(4), 379–389 (2009) DOI: 10.1007/s00603-009-0064-y

    Article  MathSciNet  Google Scholar 

  25. Zhang, L., Cao P., Radha, K. C.: Evaluation of rock strength criteria for wellbore stability analysis. International Journal of Rock Mechanics and Mining Sciences 47(2), 1304–1316 (2011) DOI: 10.1016/j.ijrmms.2010.09.001

    Google Scholar 

  26. Argyris, J. H., Faust, G., Szimmat, J., et al.: Recent developments in the finite element analysis of PCRV. In: Proceedings 2nd Int. Conf. SMIRT, Berlin, Nuclear Engineering and Design 28(1), 42–75 (1974)

    Article  Google Scholar 

  27. Jiang, J., Pietruszczak, S.: Convexity of yield loci for pressure sensitive materials. Computers and Geotechnics 5(1), 51–63 (1988) DOI: 10.1016/0266-352X(88)90016-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Jiang.

Additional information

The project was supported by Western Transportation Technology Funds of China (200731800038), and the Special Fund for Basic Scientific Research of Central Colleges, Chang’an University (CHD2011JC175).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Xie, YL. A new three-dimensional Hoek-Brown strength criterion. Acta Mech Sin 28, 393–406 (2012). https://doi.org/10.1007/s10409-012-0054-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0054-2

Keywords

Navigation