Skip to main content
Log in

A Simple Three-dimensional Failure Criterion for Rocks Based on the Hoek–Brown Criterion

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A simple three-dimensional (3D) failure criterion for rocks is proposed in this study. This new failure criterion inherits all the features of the Hoek–Brown (HB) criterion in characterizing the rock strength in triaxial compression, and also accounts for the influence of the intermediate principal stress. The failure envelope surface has non-circular convex sections in the deviatoric stress plane, and is smooth, except in triaxial compression. In particular, the failure function of the proposed criterion has a similar simple expression as that of the HB criterion in terms of the principal stresses. The material parameters can be calibrated from tests in conventional triaxial compression, and predictions using this new criterion generally compare well with polyaxial testing data for a variety of rocks. Comparison of the new 3D failure criterion and two existing criteria demonstrates that the new failure criterion performs better in characterizing the rock strength. A unified expression for the 3D failure criteria is further provided, retaining the features of the classical criteria and recovering several existing ones as specific cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

σ 1, σ 2, σ 3 :

Principal stresses at failure

σ, S :

Stress tensor and the deviatoric stress tensor

I 1, σ m :

The first invariant of stress tensor and the mean stress

J 2, J 3 :

The second and third invariants of deviatoric stress tensor

τ oct :

The octahedral shear stress

σ 1 , σ 2 , σ 3 :

Effective principal stresses at failure

σ m , σ m,2 :

The effective mean stress

θ :

The similarity angle

ξ, ρ, θ :

Haigh–Westergaard coordinates

m b , s, a :

The empirical constants of the generalized Hoek–Brown criterion

σ ci, m i :

The uniaxial compression strength and material constant of intact rock

GSI, D :

The Geological strength index and the disturbance of rock masses

R 3(θ):

The lode dependence function

A(θ):

The coefficient of the failure criterion

RMSE:

The root-mean-square error

ρ test i , ρ calc i :

The i-th tested data and the i-th calculated one

\(\bar{\rho }_{\text{test}}\) :

The mean value of the test sample

n :

The number of test series for a specific rock

ɛ i :

The predicted error for the i-th test

DC:

Coefficient of determination

References

  • Al-Ajmi AM, Zimmerman RW (2005) Relation between the Mogi and the Coulomb failure criteria. Int J Rock Mech Mining Sci 42(3):431–439. doi:10.1016/j.ijrmms.2004.11.004

    Article  Google Scholar 

  • Argyris JH, Faust G, Szimmat J, Warnke EP, William KJ (1974) Recent developments in the finite element analysis of PCRV. In Proceedings 2nd Int Conf, SMIRT, Berlin, Nuclear Engineering and Design. 28, No. 1, 42–75

  • Bardet JP (1990) Lode dependences for isotropic pressure-sensitive elasto-plastic materials. J Appl Mech, ASME 57(3):498–506. doi:10.1115/1.2897051

    Article  Google Scholar 

  • Chang C, Haimson BC (2000) True triaxial strength and deformability of the German Continental deep drilling program (KTB) deep hole amphibolite. J Geophys Res 105(B8):18,999–19013. doi:10.1029/2000JB900184

    Article  Google Scholar 

  • Colmenares LB, Zoback MD (2002) A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min Sci 39(6):695–729. doi:10.1016/S1365-1609(02)00048-5

    Article  Google Scholar 

  • Hoek E (1983) Strength of jointed rock masses, 23rd. Rankine Lecture. Géotechnique 33(3):187–223

    Article  Google Scholar 

  • Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 12(3):227–229

    Article  Google Scholar 

  • Hoek E (1994) Strength of rock and rock masses. ISRM News J 2(2):4–16

    Google Scholar 

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Engng ASCE 106(GT9):1013–1035

    Google Scholar 

  • Hoek E, Brown ET (1988) The Hoek–Brown failure criterion-a 1988 update. In Proceedings of the 15th Canadian Rock Mechanics Symposium, Toronto, 31–38

  • Hoek E, Brown ET (1997) Practical estimates of rockmass strength. Int J Rock Mech Min Sci 34(8):1165–1186. doi:10.1016/S1365-1609(97)80069-X

    Article  Google Scholar 

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, The Netherlands

    Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown failure criterion–2002 edition. In: Hammah R et al. (eds) Proc. 5th North American Rock Mech. Symp and 17th Tunneling. Assoc. of Canada Conf.: NARMS-TAC 2002. Mining Innovation and Tech., Toronto, 267–273

  • Jiang J, Pietruszczak S (1988) Convexity of yield loci for pressure sensitive materials. Comput Geotech 5(1):51–63

    Article  Google Scholar 

  • Jiang H, Wang XW, Xie YL (2011) New strength criteria for rocks under polyaxial compression. Can Geotech J 48(8):1233–1245. doi:10.1139/T11-034

    Article  Google Scholar 

  • Karaoulanis FE (2013) Implicit Numerical Integration of Nonsmooth Multisurface Yield Criteria in the Principal Stress Space. Arch Comput Methods Eng 20(3):263–308. doi:10.1007/s11831-013-9087-3

    Article  Google Scholar 

  • Lin FB, Bazant ZP (1986) Convexity of smooth yield surface of frictional material. J Eng Mech ASCE 112(11):1259–1262

    Article  Google Scholar 

  • Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Environ 60(2):85–92. doi:10.1007/s100640000090

    Article  Google Scholar 

  • Melkoumian N, Priest S, Hunt SP (2009) Further development of the three-dimensional hoek–brown yield criterion. Rock Mech Rock Eng 42(6):835–847. doi:10.1007/s00603-008-0022-0

    Article  Google Scholar 

  • Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76(5):1255–1269

    Article  Google Scholar 

  • Mogi K (2007) Experimental rock mechanics. Taylor & Francis, London

    Google Scholar 

  • Ottosen NS (1977) A failure criterion for concrete. J Eng Mech Div 103(4):527–535

    Google Scholar 

  • Pan XD, Hudson JA (1988) A simplified three dimensional Hoek–Brown yield criterion. In: Romana M (ed) Rock mechanics and power plants. Balkema, Rotterdam, pp 95–103

  • Piccolroaz A, Bigoni D (2009) Yield criteria for quasibrittle and frictional materials: a generalization to surfaces with corners. Int J Solids Struct 46(20):3587–3596. doi:10.1016/j.ijsolstr.2009.06.006

    Article  Google Scholar 

  • Priest S (2005) Determination of shear strength and three-dimensional yield strength for the Hoek–Brown criterion. Rock Mech Rock Eng 38(6):299–327. doi:10.1007/s00603-005-0056-5

    Article  Google Scholar 

  • Priest S (2012) Three-dimensional failure criteria based on the Hoek–Brown criterion. Rock Mech Rock Eng 45(6):989–993. doi:10.1007/s00603-012-0277-3

    Article  Google Scholar 

  • Rubin MB (1991) simple, convenient isotropic failure surface. J Eng Mech 117(2):348–569. doi:10.1061/(ASCE)0733-9399(1991)117:2(348)

    Article  Google Scholar 

  • Wang R, Kemeny JM (1995) A new empirical criterion for rock under polyaxial compressive stresses. In: Daemen and Schultz (ed) Rock mechanics. Balkema, Rotterdam, 453–458

  • Willam KJ, Warnke EP (1975) Constitutive model for the triaxial behavior of concrete. Presented at the seminar on concrete structures subjected to triaxial stress. Istituto Sperimentale Modellie Strutture (ISMES), Bergamo,1–30

  • Zhang L (2008) A generalized three-dimensional Hoek–Brown strength criterion. Rock Mech Rock Eng 41(4):893–915. doi:10.1007/s00603-008-0169-8

    Article  Google Scholar 

  • Zhang L, Zhu H (2007) Three-dimensional Hoek–Brown strength criterion for rocks. J Geotech Geoenviron Eng 133(9):1128–1135. doi:10.1061/(ASCE)1090-0241(2007)133:9

    Article  Google Scholar 

Download references

Acknowledgments

The first author is grateful for the support from the National Science Foundation of China (Grant 51308054). The opinions, findings, and conclusions do not reflect the views of the funding institutions or other individuals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Jiang.

Appendix: Unified Expression of the 3D Failure Criterion for Intact Rocks

Appendix: Unified Expression of the 3D Failure Criterion for Intact Rocks

For intact rocks, a = 0.5, the unified expression given by Eq. (21) can be written as

$$3\frac{{J^{\prime}_{2} }}{{\sigma_{\text{ci}}^{2} }} + \frac{{m_{b} }}{\sqrt 3 }A\left( \theta \right)\frac{{\sqrt {J^{\prime}_{2} } }}{{\sigma_{\text{ci}} }} - s - \frac{{m_{b} I_{1}^{'} }}{{3\sigma_{\text{ci}} }} = 0$$
(43)

Then \(\sqrt {J^{\prime}_{2} } /\sigma_{\text{ci}}\) can be explicitly derived from Eq. (43)

$$\frac{{\sqrt {J^{\prime}_{2} } }}{{\sigma_{\text{ci}} }} = \frac{{ - b + \sqrt {b^{2} - 4ac} }}{2a} = \frac{1}{6}\left[ { - \frac{{m_{b} }}{\sqrt 3 }A\left( \theta \right) + \sqrt {\frac{{m_{b}^{2} }}{3}A^{2} \left( \theta \right) + 12\left( {m_{b} \frac{{\sigma^{\prime}_{m} }}{{\sigma_{\text{ci}} }} + s} \right)} } \right]$$
(44)

Or in terms of Haigh–Westergaard coordinates

$$\frac{\rho }{{\sqrt 2 \sigma_{\text{ci}} }} = \frac{{ - b + \sqrt {b^{2} - 4ac} }}{2a} = \frac{1}{6}\left[ { - \frac{{m_{b} }}{\sqrt 3 }A\left( \theta \right) + \sqrt {\frac{{m_{b}^{2} }}{3}A^{2} \left( \theta \right) + 12\left( {\frac{{\xi m_{b} }}{{\sqrt 3 \sigma_{\text{ci}} }} + s} \right)} } \right]$$
(45)

Finally, we obtain the following invariant representation for the unified expression

$$\rho = \frac{{\sqrt 2 \sigma_{ci} m_{b} }}{6}\left[ { - \frac{A\left( \theta \right)}{\sqrt 3 } + \sqrt {\frac{{A^{2} \left( \theta \right)}}{3} + 12\left( {\frac{\xi }{{\sqrt 3 m_{b} \sigma_{ci} }} + \frac{s}{{m_{b}^{2} }}} \right)} } \right]$$
(46)

The invariant representation for the new failure criterion (see Eq. (29)) is given by

$$\rho = \sqrt 2 \sigma_{\text{ci}} m_{b} \left[ { - \frac{\sqrt 3 }{9}\cos \left( {\frac{\pi }{3} - \theta } \right) + \sqrt {\frac{1}{27}\cos^{2} \left( {\frac{\pi }{3} - \theta } \right) + \frac{1}{3}\left( {\frac{s}{{m_{b}^{2} }} + \frac{\xi }{{\sqrt 3 \sigma_{\text{ci}} m_{b} }}} \right)} } \right]$$
(47)

Rearranging Eq. (47) gives

$$\rho = \frac{{\sqrt 2 \sigma_{\text{ci}} m_{b} }}{6}\left[ { - \frac{2}{\sqrt 3 }\cos \left( {\frac{\pi }{3} - \theta } \right) + \sqrt {\frac{4}{3}\cos^{2} \left( {\frac{\pi }{3} - \theta } \right) + 12\left( {\frac{s}{{m_{b}^{2} }} + \frac{\xi }{{\sqrt 3 \sigma_{\text{ci}} m_{b} }}} \right)} } \right]$$
(48)

which can be also derived from Eq. (46) by setting A(θ) = 2cos(π/3−θ).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Zhao, J. A Simple Three-dimensional Failure Criterion for Rocks Based on the Hoek–Brown Criterion. Rock Mech Rock Eng 48, 1807–1819 (2015). https://doi.org/10.1007/s00603-014-0691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0691-9

Keywords

Navigation