Skip to main content
Log in

Typical Upper Bound–Lower Bound Mixed Mode Fracture Resistance Envelopes for Rock Material

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Mixed mode fracture experiments were conducted on Harsin marble using two disc-shape samples namely the Brazilian disc (BD) and the semi-circular bend (SCB) specimens. For each specimen, a complete fracture toughness envelope ranging from pure mode I to pure mode II was obtained. The experimental results indicate that the mixed mode fracture toughness depends on the geometry and loading conditions such that for any similar mode mixture, the BD test data were significantly greater than the SCB fracture toughness results. Therefore, the conventional fracture criteria which present a unique mixed mode fracture curve, fail to predict the test results. It is shown that a generalized criterion, which takes into account the effects of geometry and loading conditions, is able to provide individual fracture curves for theses specimens with very good estimates for the test results obtained from both BD and SCB specimens. The BD and SCB specimens can be suggested as appropriate specimens for obtaining typical upper bound and lower bound envelopes for mixed mode fracture toughness of rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aliha MRM, Ashtari R, Ayatollahi MR (2006) Mode I and mode II fracture toughness testing for a coarse grain marble. J Appl Mech Mater 5–6:181–188

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Pakzad R (2008) Brittle fracture analysis using a ring shape specimen containing two angled cracks. Int J Fract 153(1):63–68

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech 77:2200–2212

    Article  Google Scholar 

  • Al-Shayea NA (2005) Crack propagation trajectories for rocks under mixed mode I–II fracture. Eng Geol 81(1):84–97

    Article  Google Scholar 

  • Awaji H, Sato S (1978) Combined mode fracture toughness measurement by the disc test. J Eng Mater Technol 100:175–182

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2007a) Fracture toughness study for a brittle rock subjected to mixed mode I/II loading. Int J Rock Mech Min Sci 44(4):617–624

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2007b) Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comput Mater Sci 38(4):660–670

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2008) On the use of brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Eng Fract Mech 75:4631–4641

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2009) Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng Fract Mech 76(11):1563–1573

    Article  Google Scholar 

  • Chang SH, Lee CI, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimen. Eng Geol 66:79–97

    Article  Google Scholar 

  • Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26:59–62

    Article  Google Scholar 

  • Chong KP, Kuruppu MD, Kuszmual JS (1987) Fracture toughness determination of layered materials. Eng Fract Mech 28(1):43–54

    Article  Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng Trans ASME 85:519–525

    Article  Google Scholar 

  • Fowell RJ (1994) The use of the cracked Brazilian disc geometry for rock fracture investigations. Int J Rock Mech Min Sci Geomech Abstr 31(6):571–579

    Article  Google Scholar 

  • Fowell RJ (1995) ISRM-Suggested methods for determining mode I fracture toughness using cracked chevron notched Brazilian disk (CCNBD) specimens. Int J Rock Mech Min Sci Geomech Abstr 32:57–64

    Article  Google Scholar 

  • Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu M (2004) Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. Int J Rock Mech Min Sci 41(6):927–938

    Article  Google Scholar 

  • Gómez FJ, Elices M, Berto F, Lazzarin P (2009) Fracture of U-notched specimens under mixed mode: experimental results and numerical predictions. Eng Fract Mech 76(2):236–249

    Article  Google Scholar 

  • Hussain MA, Pu SL, Underwood J (1974) Strain energy release rate for a crack under combined mode I and Mode II. Fracture analysis, ASTM STP 560. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15:99–103

    Google Scholar 

  • Ke CC, Chen CS, Tu CH (2008) Determination of fracture toughness of anisotropic rocks by boundary element method. Rock Mech Rock Eng 41(4):509–538

    Article  Google Scholar 

  • Khan K, Al-Shayea NA (2000) Effect of specimen geometry and testing method on mixed I–II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33(3):179–206

    Article  Google Scholar 

  • Kharazi B (2008) Mechanical Engineering Department. MSc Thesis, Iran University of Science and Technology, Tehran

  • Krishnan GR, Zhao XL, Zaman M, Roegiers JC (1998) Fracture toughness of a soft sandstone. Int J Rock Mech Min Sci 35(6):695–710

    Article  Google Scholar 

  • Lim IL, Johnston IW, Choi SK, Boland JN (1994a) Fracture testing of a soft rock with semi-circular specimens under three-point bending, Part 1:mode I. Int J Rock Mech Min Sci Geomech Abstr 31(3):185–197

    Article  Google Scholar 

  • Lim IL, Johnston IW, Choi SK, Boland JN (1994b) Fracture testing of a soft rock with semi-circular specimens under three-point bending, Part 2: mixed mode. Int J Rock Mech Min Sci Geomech Abstr 31(3):199–212

    Article  Google Scholar 

  • Liu HY, Kous Q, Lindqvist PA, Tang CA (2007) Numerical modelling of the heterogeneous rock fracture process using various test techniques. Rock Mech Rock Eng 40(2):107–144

    Article  Google Scholar 

  • Nasseri MHB, Mohanty B (2008) Fracture toughness anisotropy in granitic rocks. Int J Rock Mech Min Sci 45(2):167–193

    Article  Google Scholar 

  • Schmidt RA (1980) A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In: Proceedings of the 21st U.S. rock mechanics symposium, Missouri, Rolla, 27–30 May 1980, pp 581–590

  • Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10:305–321

    Article  Google Scholar 

  • Smith DJ, Ayatollahi MR, Pavier MJ (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading. Fatig Fract Eng Mater Struct 24:137–150

    Article  Google Scholar 

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    Google Scholar 

  • Zhao XL, Fowell RJ, Roegiers JC, Xu C (1994) Rock fracture-toughness determination by the Brazilian test. Eng Geol 38(1–2):181–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. M. Aliha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliha, M.R.M., Ayatollahi, M.R. & Akbardoost, J. Typical Upper Bound–Lower Bound Mixed Mode Fracture Resistance Envelopes for Rock Material. Rock Mech Rock Eng 45, 65–74 (2012). https://doi.org/10.1007/s00603-011-0167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-011-0167-0

Keywords

Navigation