Skip to main content
Log in

Mathematische Methoden in der Geothermie

  • Mathematik in Forschung und Anwendung
  • Published:
Mathematische Semesterberichte Aims and scope Submit manuscript

Zusammenfassung

Insbesondere bei der industriellen Nutzung tiefer geothermischer Systeme gibt es Risiken, die im Hinblick auf eine zukunftsträchtige Rolle der Ressource „Geothermie“ innerhalb der Energiebranche eingeschätzt und minimiert werden müssen. Zur Förderung und Unterstützung dieses Prozesses kann die Mathematik einen entscheidenden Beitrag leisten. Um dies voranzutreiben haben wir zur Charakterisierung tiefer geothermischer Systeme ein Säulenmodell entwickelt, das die Bereiche Exploration, Bau und Produktion näher beleuchtet. Im Speziellen beinhalten die Säulen: Seismische Erkundung, Gravimetrie/Geomagnetik, Transportprozesse, Spannungsfeld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Altmann, J.B., Dorner, A., Schoenball, M., Müller, B.I.R., Müller, T.M.: Modellierung von porendruckinduzierten Änderungen des Spannungsfeldes in Reservoiren. In: Kongressband, Geothermiekongress 2008, Karlsruhe (2008)

    Google Scholar 

  2. Arbogast, T.: Analysis of the simulation of single phase flow through a naturally fractured reservoir. SIAM J. Numer. Anal. 26, 12–29 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Augustin, M.: Mathematical aspects of stress field simulations in deep geothermal reservoirs. Bericht 50. In: Schriften zur Funktionalanalysis und Geomathematik. TU Kaiserslautern, Kaiserslautern (2011)

    Google Scholar 

  4. Baysal, E., Kosloff, D.D., Sherwood, J.W.C.: Reverse time migration. Geophysics 48(11), 1514–1524 (1983)

    Article  Google Scholar 

  5. Bear, J.: Dynamics of Fluids in Porous Media. Amsterdam, Elsevier (1972)

    MATH  Google Scholar 

  6. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 852–864 (2002)

    Article  Google Scholar 

  7. Biondi, B.L.: Three-Dimensional Seismic Imaging. Society of Exploration Geophysicists, Tulsa (2006)

    Google Scholar 

  8. Biot, M.A.: Le Problème de la Consolidation des Matières Argileuses sous une Charge. Ann. Soc. Sci. Brux. B55, 110–113 (1935)

    Google Scholar 

  9. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 151–164 (1941)

    Google Scholar 

  10. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blakely, R.J.: Potential Theory in Gravity & Magnetic Application. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  12. Blank, L.: Numerical treatment of differential equations of fractional order. NAR Report, 1996

  13. Bleistein, N., Cohen, J.K., Stockwell, J.W.: Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Springer, Berlin (2000)

    Google Scholar 

  14. Bording, R.P., Liner, C.L.: Theory of 2.5-D reverse time migration. In: Proceedings, 64th Annual International Meeting. Society of Exploration Geophysicists, Tulsa (1994)

    Google Scholar 

  15. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  16. Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media. Computational Science & Engineering, vol. 12. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  17. Claerbout, J.: Basic Earth Imaging. Stanford University, Stanford (2009)

    Google Scholar 

  18. de Boer, R.: Theory of Porous Media—Highlights in Historical Development and Current State. Springer, Berlin (2000)

    MATH  Google Scholar 

  19. Deng, F., McMechan, G.A.: 3-D true amplitude prestack depth migration. In: Proceedings, SEG Annual Meeting, San Antonio (2007)

    Google Scholar 

  20. Dershowitz, W.S., La Pointe, P.R., Doe, T.W.: Advances in discrete fracture network modeling. In: Proceedings, US EPA/NGWA Fractured Rock Conference, Portland, pp. 882–894 (2004)

    Google Scholar 

  21. Dietrich, P., Helmig, R., Sauter, M., Hötzel, H., Köngeter, J., Teutsch, G.: Flow and Transport in Fractured Porous Media. Springer, Berlin (2005)

    Book  Google Scholar 

  22. Eker, E., Akin, S.: Lattice Boltzmann simulation of fluid flow in synthetic fractures. Transp. Porous Media 65, 363–384 (2006)

    Article  Google Scholar 

  23. Ene, H.I., Poliševski, D.: Thermal Flow in Porous Media. Reidel, Dordrecht (1987)

    Book  Google Scholar 

  24. Evans, K.F., Cornet, F.H., Hashida, T., Hayashi, K., Ito, T., Matsuki, K., Wallroth, T.: Stress and rock mechanics issues of relevance to HDR/HWR engineered geothermal systems: review of developments during the past 15 years. Geothermics 28, 455–474 (1999)

    Article  Google Scholar 

  25. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fehlinger, T.: Multiscale formulations for the disturbing potential and the deflections of the vertical in locally reflected physical geodesy. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2009)

  27. Ford, N.J., Simpson, A.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Freeden, W.: Metaharmonic Lattice Point Theory. CRC Press/Taylor & Francis, Boca Raton/London (2011)

    MATH  Google Scholar 

  29. Freeden, W., Gerhards, C.: Poloidal and toroidal field modeling in terms of locally supported vector wavelets. Math. Geosci. 42, 817–838 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Freeden, W., Mayer, C., Schreiner, M.: Tree algorithms in wavelet approximations by Helmholtz potential operators. Numer. Funct. Anal. Optim. 24(7 & 8), 747–782 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  32. Freeden, W., Ostermann, I., Augustin, M.: Mathematik als Schlüsseltechnologie in der Geothermie. Geotherm. Energ. 70, 20–24 (2011)

    Google Scholar 

  33. Freeden, W., Schreiner, M.: Local multiscale modelling of geoid undulations from deflections of the vertical. J. Geod. 79, 641–651 (2006)

    Article  MATH  Google Scholar 

  34. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin (2009)

    MATH  Google Scholar 

  35. Freeden, W., Wolf, K.: Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math. Semesterber. 56, 53–77 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gerhards, C.: Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling. Int. J. Geomath. 1, 205–256 (2011)

    Article  MathSciNet  Google Scholar 

  37. Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2011)

  38. Ghassemi, A.: A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development. Final Report, Department of Geology & Geological Engineering, University of North Dakota, (2003)

  39. Ghassemi, A., Zhang, Q.: Poro-thermoelastic mechanisms in Wellbore stability and reservoir stimulation. In: Proceedings, 29th Workshop on Geothermal Reservoir Engineering, Stanford University, California, SGP-TR-173 (2004)

    Google Scholar 

  40. Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Golberg, M.A. (ed.) Boundary Integral Methods—Numerical and Mathematical Aspects, chapter 4, pp. 103–176. Computational Mechanics Publications, Southampton (1998)

    Google Scholar 

  41. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Berlin (1997)

    Google Scholar 

  42. Haney, M.M., Bartel, L.C., Aldridge, D.F., Symons, N.P.: Insight into the output of reverse-time migration: what do the amplitudes mean? In: Proceedings, SEG Annual Meeting, Houston (2005)

    Google Scholar 

  43. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997)

    Google Scholar 

  44. Helmig, R., Niessner, J., Flemisch, B., Wolff, M., Fritz, J.: Efficient modeling of flow and transport in porous media using multi-physics and multi-scale approaches. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, chapter 15, pp. 417–457. Springer, Berlin (2010)

    Chapter  Google Scholar 

  45. Ilyasov, M.: A tree algorithm for Helmholtz potential wavelets on non-smooth surfaces: theoretical background and application to seismic data postprocessing. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2011)

  46. Ilyasov, M., Ostermann, I., Punzi, A.: Modeling deep geothermal reservoirs: recent advances and future problems. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, chapter 22, pp. 679–711. Springer, Berlin (2010)

    Chapter  Google Scholar 

  47. Jacobs, F., Meyer, H.: Geophysik-Signale aus der Erde. Teubner (1992)

  48. Jing, L., Hudson, J.A.: Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 39, 409–427 (2002)

    Article  Google Scholar 

  49. John, V., Kaya, S., Layton, W.: A two-level variational multiscale method for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 195, 4594–4603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. John, V., Schmeyer, E.: Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198, 475–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jung, R.: Stand und Aussichten der Tiefengeothermie in Deutschland. Erdöl Erdgas Kohle 123(2), 1–7 (2007)

    Google Scholar 

  52. Kim, I., Lindquist, W.B., Durham, W.B.: Fracture flow simulation using a finite-difference lattice Boltzmann method. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67, 046708 (2003)

    Article  Google Scholar 

  53. Kolditz, O.: Strömung, Stoff- und Wärmetransport im Kluftgestein. Borntraeger (1997)

  54. Kühn, M., Bartels, J., Iffland, J.: Predicting reservoir property trends under heat exploitation: interaction between flow, heat transfer, transport, and chemical reactions in a deep aquifer at Stralsund, Germany. Geothermics 31(6), 725–749 (2002)

    Article  Google Scholar 

  55. Lang, U., Helmig, R.: Numerical modeling in fractured media—identification of measured field data. In: Krasny, J., Mls, J. (eds.) Groundwater Quality: Remediation and Protection, pp. 203–212. IAHS and University Karlova, Prague (1995)

    Google Scholar 

  56. Lomize, G.M.: Seepage in Fissured Rocks. State Press, Moscow (1951)

    Google Scholar 

  57. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351(1), 218–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Luchko, Y.: Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59(5), 1766–1772 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Luchko, Y., Punzi, A.: Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Int. J. Geomath. 1, 257–276 (2010)

    Article  MathSciNet  Google Scholar 

  60. Martin, G.S., Marfurt, K.J., Larsen, S.: Marmousi-2: an updated model for the investigation of AVO in Structurally Complex Areas. In: Proceedings, SEG Annual Meeting (2002)

    Google Scholar 

  61. McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52, 69–88 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, Orlando (1984)

    Google Scholar 

  63. Michel, V.: A multiscale approximation for operator equations in separable Hilbert spaces—case Study: Reconstruction and Description of the Earth’s Interior. Habilitation thesis, TU Kaiserslautern, Geomathematics Group, Germany (2002)

  64. Michel, V., Wolf, K.: Numerical aspects of a spline-based multiresolution recovery of the harmonic mass density out of gravity functionals. Geophys. J. Int. 173, 1–16 (2008)

    Article  Google Scholar 

  65. Moeck, I., Kwiatek, G., Zimmermann, G.: The in-situ stress field as a key issue for geothermal field development—a case study from the NE German Basin. In: Proceedings, 71st EAGE Conference & Exhibition, Amsterdam (2009)

    Google Scholar 

  66. Nakao, S., Ishido, T.: Pressure-transient behavior during cold water injection into geothermal wells. Geothermics 27(4), 401–413 (1998)

    Article  Google Scholar 

  67. Neuman, S., Depner, J.: Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near oracle, Arizona. J. Hydrol. 102, 475–501 (1988)

    Article  Google Scholar 

  68. Ostermann, I.: Modeling heat transport in deep geothermal systems by radial basis functions. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2011)

  69. Ostermann, I.: Three-dimensional modeling of heat transport in deep hydrothermal reservoirs. Int. J. Geomath. 2, 37–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  70. Podvin, P., Lecomte, I.: Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys. J. Int. 105, 271–284 (1991)

    Article  Google Scholar 

  71. Pruess, K.: Modelling of geothermal reservoirs: fundamental processes, computer simulation and field applications. Geothermics 19(1), 3–15 (1990)

    Article  Google Scholar 

  72. Pruess, K., Narasimhan, T.N.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25, 14–26 (1985)

    Google Scholar 

  73. Pruess, K., Wang, J.S.Y., Tsang, Y.W.: Effective continuum approximation for modeling fluid and heat flow in fractured porous tuff. Sandia National Laboratories report SAND86-7000, Albuquerque, New Mexico (1986)

  74. Rivera-Recillas, D.E., Lozada-Zumaeta, M.M., Ronquillo-Jarillo, G., Campos-Enríquez, J.O.: Multiresolution analysis applied to interpretation of seismic reflection data. Geofís. Int. 44(4), 355–368 (2005)

    Google Scholar 

  75. Rutqvist, J., Stephansson, O.: The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 11, 7–40 (2003)

    Article  Google Scholar 

  76. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. VCH, Weinheim (1995)

    MATH  Google Scholar 

  77. Sanyal, S.: Classification of geothermal systems—a possible scheme. In: Proceedings, 30th Workshop on Geothermal Reservoir Engineering, Stanford University, California, SGP-TR-176, pp. 85–92 (2005)

    Google Scholar 

  78. Sanyal, S.K., Butler, S.J., Swenson, D., Hardeman, B.: Review of the state-of-the-art of numerical simulation of enhanced geothermal systems. In: Proceedings, World Geothermal Congress, Kyushu-Tohoku, Japan (2000)

    Google Scholar 

  79. Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  80. Schulz, R.: Aufbau eines geothermischen Informationssystems für Deutschland. Endbericht. Leibniz-Institut für Angewandte Geophysik, Hannover (2009)

    Google Scholar 

  81. Symes, W.W.: Reverse time migration with optimal checkpointing. Geophysics 72(5), SM213–SM221 (2007)

    Article  Google Scholar 

  82. Turcotte, D.L., Schubert, G.: Geodynamics. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  83. Versteeg, R.: The marmousi experience: velocity model determination on a synthetic complex data set. Lead. Edge 13, 927–936 (1994)

    Article  Google Scholar 

  84. Vidale, J.: Finite-difference calculation of travel times. Bull. Seismol. Soc. Am. 78(6), 2062–2076 (1988)

    Google Scholar 

  85. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  86. Wolf, K.: Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. Ph.D. thesis, TU Kaiserslautern, Geomathematics Group, Germany (2009)

  87. Wu, Y.S.: On the effective continuum method for modeling multiphase flow, multicomponent transport and heat transfer in fractured rock. In: Faybishenko, B., Witherspoon, P.A., Benson, S.M. (eds.) Dynamics of Fluids in Fractured Rocks, Concepts and Recent Advances, pp. 299–312. American Geophysical Union, Washington (2000)

    Chapter  Google Scholar 

  88. Wu, Y.S., Pruess, K.: A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs. In: Proceedings, World Geothermal Congress 2005, Antalya, Turkey (2005)

    Google Scholar 

  89. Xie, X.B., Wu, R.S.: A depth migration method based on the full-wave reverse time calculation and local one-way propagation. In: Proceedings, SEG Annual Meeting, New Orleans (2006)

    Google Scholar 

  90. Yilmaz, O.: Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists (1987)

  91. Yin, S.: Geomechanics-reservoir modeling by displacement discontinuity-finite element method. Ph.D. thesis, University of Waterloo, Ontario, Canada (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Freeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustin, M., Freeden, W., Gerhards, C. et al. Mathematische Methoden in der Geothermie. Math Semesterber 59, 1–28 (2012). https://doi.org/10.1007/s00591-011-0093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00591-011-0093-y

Schlüsselwörter

Mathematics Subject Classification (2000)2010@german

Navigation