Skip to main content

Advertisement

Log in

Asymmetrical trunk movement during walking improved to normal range at 3 months after corrective posterior spinal fusion in adolescent idiopathic scoliosis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of posterior spinal fusion (PSF) and curve type on upper body movements in Adolescent Idiopathic Scoliosis (AIS) patients during gait.

Methods

Twenty-four girls (12–18 years) with AIS underwent PSF. 3D-Gait-analyses were performed preoperatively, at 3 months and 1 year postoperatively. Mean position (0° represents symmetry) and range of motion (ROM) of the trunk (thorax-relative-to-pelvis) in all planes were assessed. Lower body kinematics and spatiotemporal parameters were also evaluated.

Results

Mean trunk position improved from 7.0° to 2.9° in transversal plane and from 5.0° to − 0.8° in frontal plane at 3 months postoperative (p < 0.001), and was maintained at 1 year. Trunk ROM in transverse plane decreased from 9.6° to 7.5° (p < 0.001) after surgery. No effects of PSF were observed on the lower body kinematics during the gait cycle. Patients with a double curve had a more axial rotated trunk before and after surgery (p = 0.013).

Conclusion

In AIS patients, during gait an evident asymmetrical position of the trunk improved to an almost symmetric situation already 3 months after PSF and was maintained at 1 year. Despite a reduction of trunk ROM, patients were able to maintain the same walking pattern in the lower extremities after surgery. This improvement of symmetry and maintenance of normal gait can explain the rapid recovery and well functioning in daily life of AIS patients, despite undergoing a fusion of large parts of their spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen PQ, Wang JL, Tsuang YH et al (1998) The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clin Biomech 13(1):S52–S58

    Article  Google Scholar 

  2. Kramers-de Quervain IA, Müller R, Stacoff A et al (2004) Gait analysis in patients with idiopathic scoliosis. Eur Spine J 13(5):449–456

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mahaudens P, Thonnard JL, Detrembleur C (2005) Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. Spine J 5(4):427–433

    Article  PubMed  Google Scholar 

  4. Engsberg JR, Bridwell KH, Reitenbach AK et al (2001) Preoperative gait comparisons between adults undergoing long spinal deformity fusion surgery (thoracic to L4, L5, or sacrum) and controls. Spine 26(18):2020–2028

    Article  CAS  PubMed  Google Scholar 

  5. Yang JH, Suh SW, Sung PS et al (2013) Asymmetrical gait in adolescents with idiopathic scoliosis. Eur Spine J 22(11):2407–2413

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nishida M, Nagura T, Fujita N et al (2017) Position of the major curve influences asymmetrical trunk kinematics during gait in adolescent idiopathic scoliosis. Gait Posture 51:142–148

    Article  PubMed  Google Scholar 

  7. de Kleuver M, Lewis SJ, Germscheid NM et al (2014) Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. Eur Spine J 23(12):2603–2618

    Article  PubMed  Google Scholar 

  8. Engsberg JR, Lenke LG, Reitenbach AK et al (2002) Prospective evaluation of trunk range of motion in adolescents with idiopathic scoliosis undergoing spinal fusion surgery. Spine 27(12):1346–1354

    Article  PubMed  Google Scholar 

  9. Engsberg JR, Lenke LG, Uhrich ML et al (2003) Prospective comparison of gait and trunk range of motion in adolescents with idiopathic thoracic scoliosis undergoing anterior or posterior spinal fusion. Spine 28(17):1993–2000

    Article  PubMed  Google Scholar 

  10. Lenke LG, Engsberg JR, Ross SA et al (2001) Prospective dynamic functional evaluation of gait and spinal balance following spinal fusion in adolescent idiopathic scoliosis. Spine 26(14):E330–E337

    Article  CAS  PubMed  Google Scholar 

  11. Mahaudens P, Detrembleur C, Mousny M et al (2010) Gait in thoracolumbar/lumbar adolescent idiopathic scoliosis: effect of surgery on gait mechanisms. Eur Spine J 19(7):1179–1188

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schurr SA, Marshall AN, Resch JE, Saliba SA (2017) Two-dimensional video analysis is comparable to 3D motion in lower extremity movement assessment. Int J Sports Phys Ther 12(2):163

    PubMed  PubMed Central  Google Scholar 

  13. Smith AC, Roberts JR, Wallace ES, Kong P, Forrester SE (2016) Comparison of two-and three-dimensional methods for analysis of trunk kinematic variables in the golf swing. J Appl Biomech 32(1):23–31

    Article  PubMed  Google Scholar 

  14. Schimmel JJ, Groen BE, Weerdesteyn V et al (2015) Adolescent idiopathic scoliosis and spinal fusion do not substantially impact on postural balance. Scoliosis 10(1):1

    Article  Google Scholar 

  15. Watt JR, Franz JR, Jackson K, Dicharry J, Riley PO, Kerrigan DC (2010) A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin Biomech 25(5):444–449

    Article  Google Scholar 

  16. Holewijn RM, Kingma I, de Kleuver M, Schimmel JJP, Keijsers NLW (2017) Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients. Gait Posture 57:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Le Berre M, Guyot MA, Agnani O, Bourdeauducq I, Versyp MC, Donze C et al (2016) Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis. Eur Spine J 26(6):1638–1644. https://doi.org/10.1007/s00586-016-4802-z

    Article  PubMed  Google Scholar 

  18. Mahaudens P, Banse X, Mousny M et al (2009) Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J 18(4):512–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crosbie J, Vachalathiti R, Smith R (1997) Patterns of spinal motion during walking. Gait Posture 5(1):6–12

    Article  Google Scholar 

  20. Wilken JM, Rodriguez KM, Brawner M, Darter BJ (2012) Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait Posture 35(2):301–307

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël L. W. Keijsers.

Ethics declarations

Conflict of interest

We have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong-Chung, D.A.C.F., Schimmel, J.J.P., de Kleuver, M. et al. Asymmetrical trunk movement during walking improved to normal range at 3 months after corrective posterior spinal fusion in adolescent idiopathic scoliosis. Eur Spine J 27, 388–396 (2018). https://doi.org/10.1007/s00586-017-5369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5369-z

Keywords

Navigation