Skip to main content
Log in

Do in vivo kinematic studies provide insight into adjacent segment degeneration? A qualitative systematic literature review

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

While much evidence suggests that adjacent segment degeneration is merely a manifestation of the natural degenerative process unrelated to any spine fusion, a significant body of literature supports the notion that it is a process due in part to the altered biomechanics adjacent to fused spine segments. The purpose of this study was to review and critically analyze the published literature that investigated the in vivo kinematics of the adjacent segments and entire lumbar spine in patients receiving spinal fusion or motion-preserving devices.

Methods

A systematic review of the PubMed database was conducted, initially identifying 697 studies of which 39 addressed the in vivo kinematics of the segments adjacent to spinal implants or non-instrumented fusion of the lumbar spine.

Results

Twenty-nine articles studied fusion, of which three reported a decrease in range of motion of the caudal adjacent segment post-fusion. Examining the rostral adjacent segment, twelve studies observed no change, nine studies found a significant increase, and three studies reported a significant decrease in sagittal plane range of motion. Of the six studies that analyzed motion for the entire lumbar spine as a unit, five studies showed a significant decrease and one study reported no change in global lumbar spine motion. Kinematics of the segment rostral to a total disc replacement was investigated in six studies: four found no change and the results for the other two showed dependence on treatment level. Fifteen studies of non-fusion posterior implants analyzed the motion of the adjacent segment with two studies noting an increase in motion at the rostral level.

Conclusions

There appears to be no overall kinematic changes at the rostral or caudal levels adjacent to a fusion, but some patients (~20–30 %) develop excessive kinematic changes (i.e., instability) at the rostral adjacent level. The overall lumbar ROM after fusion appears to decrease after a spinal fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lund T, Oxland TR (2011) Adjacent level disk disease—is it really a fusion disease? Orthop Clin N Am 42:529–541. doi:10.1016/j.ocl.2011.07.006 (viii)

    Article  Google Scholar 

  2. Park P, Garton HJ, Gala VC et al (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29:1938–1944

    Article  Google Scholar 

  3. Penta M, Sandhu A, Fraser RD (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 20:743–747

    Article  CAS  Google Scholar 

  4. Wai EK, Santos ERG, Morcom RA, Fraser RD (2006) Magnetic resonance imaging 20 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 31:1952–1956

    Article  Google Scholar 

  5. Korovessis P, Repantis T, Zacharatos S, Zafiropoulos A (2009) Does Wallis implant reduce adjacent segment degeneration above lumbosacral instrumented fusion. Eur Spine J 18:830–840. doi:10.1007/s00586-009-0976-y

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kaito T, Hosono N, Mukai Y et al (2010) Induction of early degeneration of the adjacent segment after posterior lumbar interbody fusion by excessive distraction of lumbar disc space. J Neurosurg Spine 12:671–679. doi:10.3171/2009.12.SPINE08823

    Article  PubMed  Google Scholar 

  7. Panjabi M, Malcolmson G, Teng E et al (2007) Hybrid testing of lumbar CHARITE discs versus fusions. Spine (Phila Pa 1976) 32:959–966

    Article  Google Scholar 

  8. Strube P, Tohtz S, Hoff E et al (2010) Dynamic stabilization adjacent to single-level fusion: Part I. Biomechanical effects on lumbar spinal motion. Eur Spine J 19:2171–2180

    Article  PubMed Central  PubMed  Google Scholar 

  9. Nagata H, Schendel MJ, Transfeldt EE, Lewis JL (1993) The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbosacral motion. Spine (Phila Pa 1976) 18:2471–2479

    Article  CAS  Google Scholar 

  10. Molz FJ, Partin JI, Kirkpatrick JS (2003) The acute effects of posterior fusion instrumentation on kinematics and intradiscal pressure of the human lumbar spine. J Spinal Disord Tech 16:171–179

    Article  PubMed  Google Scholar 

  11. Weinhoffer SL, Guyer RD, Herbert M, Griffith SL (1995) Intradiscal pressure measurements above an instrumented fusion: a cadaveric study. Spine (Phila Pa 1976) 20:526–531

    Article  CAS  Google Scholar 

  12. Volkheimer D, Malakoutian M, Oxland TR, Wilke H-J (2015) Limitations of current biomechanical in vitro test protocols for investigation of the adjacent segment degeneration due to spinal instrumentation. Critical analysis of the literature. Eur J Spine (accepted)

  13. White AA, Panjabi MM (1990) Clinical biomechanics of the spine. Lippincott Philadelphia

  14. Nakai S, Yoshizawa H, Kobayashi S (1999) Long-term follow-up study of posterior lumbar interbody fusion. J Spinal Disord Tech 12:293–299

    CAS  Google Scholar 

  15. Zigler J, Glenn J, Delamarter R (2012) Five-year adjacent-level degenerative changes in patients with single-level disease treated using lumbar total disc replacement with ProDisc-L versus circumferential fusion. J Neurosurg Spine 1–8 17:504–511. doi:10.3171/2012.9.SPINE11717

    Article  Google Scholar 

  16. Aota Y, Kumano K, Hirabayashi S (1995) Postfusion instability at the adjacent segments after rigid pedicle screw fixation for degenerative lumbar spinal disorders. J Spinal Disord Tech 8:464–473

    Article  CAS  Google Scholar 

  17. Anderst WJ, Vaidya R, Tashman S (2008) A technique to measure three-dimensional in vivo rotation of fused and adjacent lumbar vertebrae. Spine J 8:991–997. doi:10.1016/j.spinee.2007.07.390

    Article  PubMed  Google Scholar 

  18. Ohtori S, Yamashita M, Inoue G et al (2010) Rotational hypermobility of disc wedging using kinematic CT: preliminary study to investigate the instability of discs in degenerated scoliosis in the lumbar spine. Eur Spine J 19:989–994

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ochia RS, Inoue N, Renner SM et al (2006) Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine (Phila Pa 1976) 31:2073–2078

    Article  Google Scholar 

  20. Beastall J, Karadimas E, Siddiqui M et al (2007) The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings. Spine (Phila Pa 1976) 32:685–690

    Article  Google Scholar 

  21. Tashman S, Anderst W (2003) In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. Trans Soc Mech Eng J Biomech Eng 125:238–245

    Article  Google Scholar 

  22. Wang S, Passias P, Li G et al (2008) Measurement of vertebral kinematics using noninvasive image matching method-validation and application. Spine (Phila Pa 1976) 33:E355–E361. doi:10.1097/BRS.0b013e3181715295

    Article  Google Scholar 

  23. Kapron AL, Aoki SK, Peters CL et al (2013) Accuracy and feasibility of dual fluoroscopy and model-based tracking to quantify in vivo hip kinematics during clinical exams. ASME 2013 Summer Bioengineering Conference American Society of Mechanical Engineers, pp V01BT38A006–V01BT38A006

  24. Bey MJ, Zauel R, Brock SK, Tashman S (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng 128:604–609

    Article  PubMed Central  PubMed  Google Scholar 

  25. Anderst W, Zauel R, Bishop J et al (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31:10–16

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ishii T, Mukai Y, Hosono N et al (2004) Kinematics of the upper cervical spine in rotation: in vivo three-dimensional analysis. Spine (Phila Pa 1976) 29:E139–E144

    Article  Google Scholar 

  27. Rogers BP, Haughton VM, Arfanakis K, Meyerand ME (2002) Application of image registration to measurement of intervertebral rotation in the lumbar spine. Magn Reson Med 48:1072–1075

    Article  PubMed  Google Scholar 

  28. Lim T-H, Eck JC, An HS et al (1997) A noninvasive, three-dimensional spinal motion analysis method. Spine (Phila Pa 1976) 22:1996–2000

    Article  CAS  Google Scholar 

  29. Zhao K, Yang C, Zhao C, An K-N (2005) Assessment of non-invasive intervertebral motion measurements in the lumbar spine. J Biomech 38:1943–1946. doi:10.1016/j.jbiomech.2004.07.029

    Article  PubMed  Google Scholar 

  30. Johnsson R, Selvik G, Strömqvist B, Sunden G (1990) Mobility of the lower lumbar spine after posterolateral fusion determined by roentgen stereophotogrammetric analysis. Spine (Phila Pa 1976) 15:347–350

    Article  CAS  Google Scholar 

  31. McGregor AH, Anderton L, Gedroyc WMW et al (2001) Assessment of spinal kinematics using open interventional magnetic resonance imaging. Clin Orthop Relat Res 392:341–348

    Article  PubMed  Google Scholar 

  32. Lim MR, Loder RT, Huang RC et al (2006) Measurement error of lumbar total disc replacement range of motion 31:291–297

    Google Scholar 

  33. Cakir B, Richter M, Puhl W, Schmidt R (2006) Reliability of motion measurements after total disc replacement: the spike and the fin method. Eur Spine J 15:165–173

    Article  PubMed Central  PubMed  Google Scholar 

  34. Pearson AM, Spratt KF, Genuario J et al (2011) Precision of lumbar intervertebral measurements: does a computer-assisted technique improve reliability? Spine (Phila Pa 1976) 36:572–580

    Article  Google Scholar 

  35. Park S-A, Ordway NR, Fayyazi AH et al (2009) Comparison of Cobb technique, quantitative motion analysis, and radiostereometric analysis in measurement of segmental range of motions after lumbar total disc arthroplasty. J Spinal Disord Tech 22:602–609. doi:10.1097/BSD.0b013e318198791e

    Article  PubMed  Google Scholar 

  36. Frymoyer JW, Hanley EN Jr, Howe J et al (1979) A comparison of radiographic findings in fusion and nonfusion patients ten or more years following lumbar disc surgery. Spine (Phila Pa 1976) 4:435–440

    Article  CAS  Google Scholar 

  37. Seitsalo S, Schlenzka D (1997) Disc degeneration in young patients with isthmic spondylolisthesis treated operatively or conservatively: a long-term follow-up. Eur Spine J 6:393–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Luk KD, Chow DH, Evans JH, Leong JC (1995) Lumbar spinal mobility after short anterior interbody fusion. Spine (Phila Pa 1976) 20:813–818

    Article  CAS  Google Scholar 

  39. Auerbach JD, Wills BPD, McIntosh TC, Balderston RA (2007) Evaluation of spinal kinematics following lumbar total disc replacement and circumferential fusion using in vivo fluoroscopy. Spine (Phila Pa 1976) 32:527–536. doi:10.1097/01.brs.0000256915.90236.17

    Article  Google Scholar 

  40. Leferink VJM, Zimmerman KW, Nijboer J et al (2002) Thoracolumbar spinal fractures: segmental range of motion after dorsal spondylodesis in 82 patients: a prospective study. Eur Spine J 11:2–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kamioka Y, Yamamoto H (1990) Lumbar trapezoid plate for lumbar spondylolisthesis: a clinical study on preoperative and postoperative instability. Spine (Phila Pa 1976) 15:1198–1203

    Article  CAS  Google Scholar 

  42. Delamarter RB, Fribourg DM, Kanim LEA, Bae H (2003) ProDisc artificial total lumbar disc replacement: introduction and early results from the United States clinical trial. Spine (Phila Pa 1976) 28:S167–S175. doi:10.1097/01.BRS.0000092220.66650.2B

    Article  Google Scholar 

  43. Auerbach JD, Jones KJ, Milby AH et al (2009) Segmental contribution toward total lumbar range of motion in disc replacement and fusions: a comparison of operative and adjacent levels. Spine (Phila Pa 1976) 34:2510–2517. doi:10.1097/BRS.0b013e3181af2622

    Article  Google Scholar 

  44. Chou W-Y, Hsu C-J, Chang W-N, Wong C-Y (2002) Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Arch Orthop Trauma Surg 122:39–43

    Article  PubMed  Google Scholar 

  45. Cakir B, Carazzo C, Schmidt R et al (2009) Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine. Spine (Phila Pa 1976) 34:1287–1291. doi:10.1097/BRS.0b013e3181a136ab

    Article  Google Scholar 

  46. Hu Y, Gu Y, Xu R et al (2011) Short-term clinical observation of the Dynesys neutralization system for the treatment of degenerative disease of the lumbar vertebrae. Orthop Surg 3:167–175. doi:10.1111/j.1757-7861.2011.00142.x

    Article  PubMed  Google Scholar 

  47. Kong D, Kim E, Eoh W (2007) One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability. J Korean Med Sci 22:330–335

    Article  PubMed Central  PubMed  Google Scholar 

  48. Ordway NR, Fayyazi AH, Abjornson C et al (2008) Twelve-month follow-up of lumbar spine range of motion following intervertebral disc replacement using radiostereometric analysis. SAS J 2:9–15. doi:10.1016/S1935-9810(08)70012-4

    Article  PubMed Central  PubMed  Google Scholar 

  49. Tournier C, Aunoble S, Le Huec JC et al (2007) Total disc arthroplasty: consequences for sagittal balance and lumbar spine movement. Eur Spine J 16:411–421. doi:10.1007/s00586-006-0208-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Siepe CJ, Hitzl W, Meschede P (2009) Interdependence between disc space height, range of motion and clinical outcome in total lumbar disc replacement. Spine (Phila Pa 1976) 34:904–916

    Article  Google Scholar 

  51. Shim CS, Lee S, Shin H, Kang HS (2007) CHARITE Versus ProDisc charite : a comparative study of a minimum 3-year follow-up. Spine (Phila Pa 1976) 32:1012–1018

    Article  Google Scholar 

  52. SariAli E, Lemaire JP, Pascal-Mousselard H et al (2006) In vivo study of the kinematics in axial rotation of the lumbar spine after total intervertebral disc replacement: long-term results: a 10–14 years follow up evaluation. Eur Spine J 15:1501–1510. doi:10.1007/s00586-005-0016-5

    Article  Google Scholar 

  53. Leivseth G, Braaten S, Frobin W, Brinckmann P (2006) Mobility of lumbar segments instrumented with a ProDisc II prosthesis: a two-year follow-up study. Spine (Phila Pa 1976) 31:1726–1733

    Article  Google Scholar 

  54. Huang RC, Girardi FP, Cammisa FP Jr et al (2003) Long-term flexion-extension range of motion of the prodisc total disc replacement. J Spinal Disord Tech 16:435–440

    Article  PubMed  Google Scholar 

  55. Huang RC, Girardi FP, Cammisa FP et al (2005) Correlation between range of motion and outcome after lumbar total disc replacement: 8.6-year follow-up. Spine (Phila Pa 1976) 30:1407–1411

    Article  Google Scholar 

  56. Huang RC, Tropiano P, Marnay T et al (2006) Range of motion and adjacent level degeneration after lumbar total disc replacement. Spine J 6:242–247. doi:10.1016/j.spinee.2005.04.013

    Article  PubMed  Google Scholar 

  57. Chung SS, Lee CS, Kang CS, Kim SH (2006) The effect of lumbar total disc replacement on the spinopelvic alignment and range of motion of the lumbar spine. J Spinal Disord Tech 19:307–311. doi:10.1097/01.bsd.0000208255.14329.1e

    Article  PubMed  Google Scholar 

  58. Berg S, Tropp HT, Leivseth G (2011) Disc height and motion patterns in the lumbar spine in patients operated with total disc replacement or fusion for discogenic back pain. Results from a randomized controlled trial. Spine J 11:991–998. doi:10.1016/j.spinee.2011.08.434

    Article  PubMed  Google Scholar 

  59. Cunningham BW, McAfee PC, Geisler FH et al (2008) Distribution of in vivo and in vitro range of motion following 1-level arthroplasty with the CHARITE artificial disc compared with fusion. J Neurosurg Spine 8:7–12. doi:10.3171/SPI-08/01/007

    Article  PubMed  Google Scholar 

  60. Guyer RD, Mcafee PC, Banco RJ et al (2009) Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J 9:374–386. doi:10.1016/j.spinee.2008.08.007

    Article  PubMed  Google Scholar 

  61. Kim CH, Chung CK, Jahng T (2011) Comparisons of outcomes after single or multilevel dynamic stabilization: effects on adjacent segment. J Spinal Disord Tech 24:60–67

    Article  PubMed  Google Scholar 

  62. Nandakumar A, Clark N, Peehal J (2010) The increase in dural sac area is maintained at 2 years after X-stop implantation for the treatment of spinal stenosis with no significant alteration in lumbar spine range. Spine J 10:762–768. doi:10.1016/j.spinee.2010.06.007

    Article  PubMed  Google Scholar 

  63. Park H, Zhang H-Y, Cho BY, Park JY (2009) Change of lumbar motion after multi-level posterior dynamic stabilization with bioflex system: 1 year follow up. J Korean Neurosurg Soc 46:285–291. doi:10.3340/jkns.2009.46.4.285

    Article  PubMed Central  PubMed  Google Scholar 

  64. Lee S, Park S (2008) Clinical experience of the dynamic stabilization system for the degenerative spine disease. J Korean Neurosurg Soc 43:221–226

    Article  PubMed Central  PubMed  Google Scholar 

  65. Siddiqui M, Karadimas E (2006) Effects of X-STOP device on sagittal lumbar spine kinematics in spinal stenosis. J Spinal Disord Tech 19:328–333

    Article  PubMed  Google Scholar 

  66. Jia Y, Sun P (2012) Preliminary evaluation of posterior dynamic lumbar stabilization in lumbar degenerative disease in Chinese patients. Chin Med J (Engl) 125:253–256. doi:10.3760/cma.j.issn.0366-6999.2012.02.017

    Google Scholar 

  67. Yu S-W, Yang S-C, Ma C-H et al (2012) Comparison of Dynesys posterior stabilization and posterior lumbar interbody fusion for spinal stenosis L4L5. Acta Orthop Belg 78:230–239

    PubMed  Google Scholar 

  68. Wimmer C, Gluch H, Krismer M et al (1997) AP-translation in the proximal disc adjacent to lumbar spine fusion: a retrospective comparison of mono-and polysegmental fusion in 120 patients. Acta Orthop 68:269–272

    Article  CAS  Google Scholar 

  69. Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech (Bristol, Avon) 22:257–265. doi:10.1016/j.clinbiomech.2006.08.006

    Article  Google Scholar 

  70. Axelsson P, Johnsson R, Strömqvist B (1997) The spondylolytic vertebra and its adjacent segment: mobility measured before and after posterolateral fusion. Spine (Phila Pa 1976) 22:414–417

    Article  CAS  Google Scholar 

  71. Axelsson P, Johnsson R, Strömqvist B (2007) Adjacent segment hypermobility after lumbar spine fusion after surgery. Acta Orthop 78:834–839. doi:10.1080/17453670710014635

    Article  PubMed  Google Scholar 

  72. Ha K-Y, Seo J-Y, Kwon S-E et al (2013) Posterior dynamic stabilization in the treatment of degenerative lumbar stenosis: validity of its rationale: Clinical article. J Neurosurg Spine 18:24–31

    Article  PubMed  Google Scholar 

  73. Kim H-J, Moon S-H, Chun H-J et al (2009) Comparison of mechanical motion profiles following instrumented fusion and non-instrumented fusion at the L4–5 segment. Clin Invest Med 32:64–69

    Google Scholar 

  74. Morishita Y, Ohta H, Naito M et al (2011) Kinematic evaluation of the adjacent segments after lumbar instrumented surgery: a comparison between rigid fusion and dynamic non-fusion stabilization. Eur Spine J 20:1480–1485. doi:10.1007/s00586-011-1701-1

    Article  PubMed Central  PubMed  Google Scholar 

  75. Lin S-C, Tsai W-C, Wu S-S, Chen P-Q (2011) Radiological and mathematical studies regarding the effects of spinal fixation on kinematics and mechanics at the parafixed segments. J Mech 26:413–422. doi:10.1017/S172771910000397X

    Article  Google Scholar 

  76. Lai P, Chen L, Niu C et al (2004) Relation between laminectomy and development of adjacent segment instability after lumbar fusion with pedicle fixation. Spine (Phila Pa 1976) 29:2527–2532

    Article  Google Scholar 

  77. Shin J-H, Wang S, Yao Q et al (2013) Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body. Eur Spine J 22:2671–2677

    Article  PubMed Central  PubMed  Google Scholar 

  78. Li GG, Wang S, Passias P et al (2009) Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur Spine J 18:1013–1021. doi:10.1007/s00586-009-0936-6

    Article  PubMed Central  PubMed  Google Scholar 

  79. Ogawa H, Hori H, Oshita H et al (2009) Sublaminar wiring stabilization to prevent adjacent segment degeneration after lumbar spinal fusion. Arch Orthop Trauma Surg 129:873–878. doi:10.1007/s00402-008-0725-4

    Article  PubMed  Google Scholar 

  80. Lai P-L, Chen L-H, Niu C-C, Chen W-J (2004) Effect of postoperative lumbar sagittal alignment on the development of adjacent instability. J Spinal Disord Tech 17:353–357

    Article  PubMed  Google Scholar 

  81. Champain S, Mazel C, Mitulescu A, Skalli W (2007) Quantitative analysis in outcome assessment of instrumented lumbosacral arthrodesis. Eur Spine J 16:1241–1249. doi:10.1007/s00586-006-0302-x

    Article  PubMed Central  PubMed  Google Scholar 

  82. Liu H, Zhou J, Wang B et al (2012) Comparison of topping-off and posterior lumbar interbody fusion surgery in lumbar degenerative disease: a retrospective study. Chin Med J (Engl) 125:3942–3946

    Google Scholar 

Download references

Acknowledgments

We wish to thank the Alexander von Humboldt Foundation for their generous support of this research through a Research Award to TRO during his sabbatical leave at the University of Ulm.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Oxland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakoutian, M., Volkheimer, D., Street, J. et al. Do in vivo kinematic studies provide insight into adjacent segment degeneration? A qualitative systematic literature review. Eur Spine J 24, 1865–1881 (2015). https://doi.org/10.1007/s00586-015-3992-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-3992-0

Keywords

Navigation