Skip to main content
Log in

Does Wallis implant reduce adjacent segment degeneration above lumbosacral instrumented fusion?

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Delayed complications following lumbar spine fusion may occur amongst which is adjacent segment degeneration (ASD). Although interspinous implants have been successfully used in spinal stenosis to authors’ knowledge such implants have not been previously used to reduce ASD in instrumented lumbar fusion. This prospective controlled study was designed to investigate if the implantation of an interspinous implant cephalad to short lumbar and lumbosacral instrumented fusion could eliminate the incidence of ASD and subsequently the related re-operation rate. Groups W and C enrolled initially each 25 consecutive selected patients. Group W included patients, who received the Wallis interspinous implant in the unfused vertebral segment cephalad to instrumentation and the group C selected age-, diagnosis-, level-, and instrumentation-matched to W group patients without interspinous implant (controls). The inclusion criterion for Wallis implantation was UCLA arthritic grade <II, while the exclusion criteria were previous lumbar surgery, severe osteoporosis or degeneration >UCLA grade II in the adjacent two segments cephalad to instrumentation. All patients suffered from symptomatic spinal stenosis and underwent decompression and 2–4 levels stabilization with rigid pedicle screw fixation and posterolateral fusion by a single surgeon. Lumbar lordosis, disc height (DH), segmental range of motion (ROM), and percent olisthesis in the adjacent two cephalad to instrumentation segments were measured preoperatively, and postoperatively until the final evaluation. VAS, SF-36, and Oswestry Disability Index (ODI) were used. One patient of group W developed pseudarthrosis: two patients of group C deep infection and one patient of group C ASD in the segment below instrumentation and were excluded from the final evaluation. Thus, 24 patients of group W and 21 in group C aged 65+ 13 and 64+ 11 years, respectively were included in the final analysis. The follow-up averaged 60 ± 6 months. The instrumented levels averaged 2.5 + 1 vertebra for both groups. All 45 spines showed radiological fusion 8–12 months postoperatively. Lumbar lordosis did not change postoperatively. Postoperatively at the first cephalad adjacent segment: DH increased in the group W (P = 0.042); ROM significantly increased only in group C (ANOVA, P < 0.02); olisthesis decreased both in flexion (P = 0.0024) and extension (P = 0.012) in group W. The degeneration or deterioration of already existed ASD in the two cephalad segments was shown in 1 (4.1%) and 6 (28.6%) spines in W and C groups, respectively. Physical function (SF-36) and ODI improved postoperatively (P < 0.001), but in favour of the patients of group W (P < 0.05) at the final evaluation. Symptomatic ASD required surgical intervention was in 3 (14%) patients of group C and none in group W. ASD remains a significant problem and accounts for a big portion of revision surgery following instrumented lumbar fusion. In this series, the Wallis interspinous implant changed the natural history of ASD and saved the two cephalad adjacent unfused vertebra from fusion, while it lowered the radiographic ASD incidence until to 5 years postoperatively. Longer prospective randomized studies are necessary to prove the beneficial effect of the interspinous implant cephalad and caudal to instrumented fusion. We recommend Wallis device for UCLA degeneration I and II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adams MA (1996) Biomechanics of spinal implants. In: Szpalski M, Gunzburg R, Spengler DM et al (eds) Instrumented fusion of the degenerative lumbar spine: state of the art, questions, and controversies. Lippincott-Raven, Philadelphia

    Google Scholar 

  2. Aota Y, Kumano K, Hirabayashi S (1995) Postfusion instability at the adjacent segments after rigid pedicle screw fixation for degenerative lumbar spinal disorders. J Spinal Disord 8:464–473. doi:10.1097/00002517-199512000-00008

    Article  PubMed  CAS  Google Scholar 

  3. Axelsson P, Johnsson R, Stromqvist B (1997) The spondylolytic vertebra and its adjacent segment. Mobility measured before and after posterolateral fusion. Spine 22:414–422. doi:10.1097/00007632-199702150-00012

    Article  PubMed  CAS  Google Scholar 

  4. Bastian L, Lange U, Knop C et al (2001) Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study. Eur Spine J 10:295–300. doi:10.1007/s005860100278

    Article  PubMed  CAS  Google Scholar 

  5. Boden SD, Davis DO, Dina TS et al (1990) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. J Bone Joint Surg Am 72:403–408

    PubMed  CAS  Google Scholar 

  6. Bono CM, Lee CK (2004) Critical analysis of treads in fusion for degenerative disc disease over the past 20 years: influence of technique on fusion rate and clinical outcome. Spine 29:455–463. doi:10.1097/01.BRS.0000090825.94611.28

    Article  PubMed  Google Scholar 

  7. Booth KC, Bridwell KH, Eisenberg BA et al (1999) Minimum 5-year results of degenerative spondylolisthesis treated with decompression and instrumented posterior fusion. Spine 24:1721–1727. doi:10.1097/00007632-199908150-00014

    Article  PubMed  CAS  Google Scholar 

  8. Brox IJ, Sorensen R, Friis A et al (2003) Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine 28:1913–1921. doi:10.1097/01.BRS.0000083234.62751.7A

    Article  PubMed  Google Scholar 

  9. Cardoso JM, Dmitriev EA, Helgeson M et al (2008) Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? Spine 26:2868–2873. doi:10.1097/BRS.0b013e31818c63d3

    Article  Google Scholar 

  10. Cheh G, Bridwell KH, Lenke L et al (2007) Adjacent segment disease following lumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. Spine 32(20):2253–2257

    Article  PubMed  Google Scholar 

  11. Chen CS, Cheng CK, Liu CL et al (2001) Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 23:483–491. doi:10.1016/S1350-4533(01)00076-5

    Article  PubMed  CAS  Google Scholar 

  12. Esses SI, Doherty BJ, Crawford MJ et al (1996) Kinematic evaluation of lumbar fusion techniques. Spine 21:676–684. doi:10.1097/00007632-199603150-00003

    Article  PubMed  CAS  Google Scholar 

  13. Farfan HF (1973) Mechanical disaorders of the low back. Lea & Febiger, Philadelphia

    Google Scholar 

  14. Fritzell P, Hagg, Nordwall A (2004) 5–10 years follow up in the Swedish lumbar spine study. Spine Week Porto, Portugal, 30 May 05 June 2004

  15. Ghiselli G, Wang JC, Hsu WK, Dawson EG (2003) L5–S1 segment survivorship and clinical outcome analysis after L4–L5 isolated fusion. Spine 12:1275–1280. doi:10.1097/00007632-200306150-00011

    Article  Google Scholar 

  16. Gillet P (2003) The fate of the adjacent motion segments after lumbar fusion. J Spinal Disord Tech 16:338–345

    PubMed  Google Scholar 

  17. Grevitt MP, Gardner AD, Spilsbury J et al (1995) The Graf stabilisation system: early results in 50 patients. Eur Spine J 4:169–175. doi:10.1007/BF00298241 discussion 35

    Article  PubMed  CAS  Google Scholar 

  18. Grob D, Benini A, Junge A et al (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331. doi:10.1097/01.brs.0000152584.46266.25

    Article  PubMed  Google Scholar 

  19. Hambly MF, Wiltse LL, Raghavan N et al (1998) The transition zone above a lumbosacral fusion. Spine 23:1785–1792. doi:10.1097/00007632-199808150-00012

    Article  PubMed  CAS  Google Scholar 

  20. Hanley EN Jr, David SM (1999) Lumbar arthrodesis for the treatment of back pain. J Bone Joint Surg Am 81:716–730

    PubMed  Google Scholar 

  21. Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:190S–194S. doi:10.1016/j.spinee.2004.07.007

    Article  PubMed  Google Scholar 

  22. Hsu K, Zucherman J, White A et al (1988) Deterioration of motion segments adjacent to lumbar spine fusions. Ortho Transact 12:605–606

    Google Scholar 

  23. Huang RC, Wright TM, Panjabi MM et al (2005) Biomechanics of nonfusion implants. Orthop Clin North Am 36:271–280. doi:10.1016/j.ocl.2005.02.010

    Article  PubMed  Google Scholar 

  24. Ishihara H, Osada R, Kanamori M, Kawaguchi Y, Ohmori K, Kimura T, Matsui H, Tsuji H (2001) Minimum 10-year follow-up study of anterior lumbar interbody fusion for Isthmic spondylolisthesis. J Spinal Disord 14:91–99. doi:10.1097/00002517-200104000-00001

    Article  PubMed  CAS  Google Scholar 

  25. Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR (2001) Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine 26:2596–2600. doi:10.1097/00007632-200112010-00014

    Article  PubMed  CAS  Google Scholar 

  26. Kleiner JB, Odom JA Jr, Moore MR et al (1995) The effect of instrumentation on human spinal fusion mass. Spine 20:90–97. doi:10.1097/00007632-199501000-00016

    Article  PubMed  CAS  Google Scholar 

  27. Korovessis P, Papazisis Z, Koureas G, Lambiris E (2004) Rigid, Semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis. A correlative radiological and clinical analysis of short-term results. Spine 29:735–742. doi:10.1097/01.BRS.0000112072.83196.0F

    Article  PubMed  Google Scholar 

  28. Korovessis P, Stamatakis M, Baikousis A (1999) Segmental Roentgenographic analysis of vertebral inclination on sagittal plane in asymptomatic versus chronic low back pain patients. J Spinal Disord Tech 12:131–137

    CAS  Google Scholar 

  29. Kumar A, Beastall J, Hughes J et al (2008) Disc changes in the bridged and adjacent segments after dynamic stabilization system after two years. Spine 33(26):2909–2914. doi:10.1097/BRS.0b013e31818bdca7

    Article  PubMed  Google Scholar 

  30. Kumar MN, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 10:314–319. doi:10.1007/s005860000239

    Article  PubMed  CAS  Google Scholar 

  31. Kumar MN, Jacquot F, Hall H (2001) Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J 10:309–313. doi:10.1007/s005860000207

    Article  PubMed  CAS  Google Scholar 

  32. Kuslich SD, Danielson G, Dowdle JD et al (2000) Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine 25:2656–2662. doi:10.1097/00007632-200010150-00018

    Article  PubMed  CAS  Google Scholar 

  33. Lafage V, Gangnet N, Senegas J et al (2007) New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Spine 32(16):1706–1713. doi:10.1097/BRS.0b013e3180b9f429

    Article  PubMed  Google Scholar 

  34. Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 13:375–377. doi:10.1097/00007632-198803000-00029

    Article  PubMed  CAS  Google Scholar 

  35. Lee CK, Langrana NA (1984) Lumbosacral spine fusion. A biomechanical study. Spine 9:574–581. doi:10.1097/00007632-198409000-00007

    Article  PubMed  CAS  Google Scholar 

  36. Leong JC, Chun SY, Grange WJ et al (1983) Long-term results of lumbar intervertebral disc prolapse. Spine 8:793–799. doi:10.1097/00007632-198310000-00018

    Article  PubMed  CAS  Google Scholar 

  37. Lindsey DP, Swanson KE, Fuchs P et al (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine 28:2192–2197. doi:10.1097/01.BRS.0000084877.88192.8E

    Article  PubMed  Google Scholar 

  38. MacNab I (1971) The traction spur: an indicator of segmental instability. J Bone Joint Surg Am 53:663–670

    PubMed  CAS  Google Scholar 

  39. Minns RJ, Walsh WK (1997) Preliminary design and experimental studies of a novel soft implant for correcting sagittal plane instability in the lumbar spine. Spine 22:1819–1825. doi:10.1097/00007632-199708150-00004 discussion 1826–1827

    Article  PubMed  CAS  Google Scholar 

  40. Miyakoshi N, Abe E, Shimada Y et al (2000) Outcome of one-level posterior lumbar interbody fusion for spondylolisthesis and postoperative intervertebral disc degeneration adjacent to the fusion. Spine 25:1837–1842. doi:10.1097/00007632-200007150-00016

    Article  PubMed  CAS  Google Scholar 

  41. Nagata H, Schendel MJ, Transfeldt EE et al (1993) The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbosacral motion. Spine 18:2471–2479. doi:10.1097/00007632-199312000-00017

    Article  PubMed  CAS  Google Scholar 

  42. Nakai S, Yoshizawa H, Kobayashi S (1999) Long-term follow-up study of posterior lumbar interbody fusion. J Spinal Disord 12:293–299. doi:10.1097/00002517-199908000-00004

    Article  PubMed  CAS  Google Scholar 

  43. Papp T, Porter RW, Aspden RM et al (1997) An in vitro study of the biomechanical effects of flexible stabilization on the lumbar spine. Spine 22:151–155. doi:10.1097/00007632-199701150-00005

    Article  PubMed  CAS  Google Scholar 

  44. Park P, Garton HJ, Gala VC et al (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 29:1938–1944. doi:10.1097/01.brs.0000137069.88904.03

    Article  PubMed  Google Scholar 

  45. Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:4873–4878. doi:10.1097/00007632-200109010-00011

    Article  Google Scholar 

  46. Pope MH, Hanley EN, Matteri RE et al (1977) Measurement of intervertebral disc space height. Spine 2:282–286. doi:10.1097/00007632-197712000-00007

    Article  Google Scholar 

  47. Richards JC, Majumdar S, Lindsey DP et al (2005) The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication. Spine 30:744–749. doi:10.1097/01.brs.0000157483.28505.e3

    Article  PubMed  Google Scholar 

  48. Rigby MC, Selmon GP, Foy MA et al (2001) Graft ligament stabilisation: mid- to long-term follow-up. Eur Spine J 10:234–236. doi:10.1007/s005860100254

    Article  PubMed  CAS  Google Scholar 

  49. Rousseau MA, Lazennec JY, Saillant G (2006) Predictors of outcomes after posterior decompression and fusion in degenerative spondylolisthesis. Eur Spine J 15:8–15. doi:10.1007/s00586-005-0935-1

    Article  Google Scholar 

  50. Schlegel JD, Smith JA, Schleusener RL (1996) Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 21:970–981. doi:10.1097/00007632-199604150-00013

    Article  PubMed  CAS  Google Scholar 

  51. Schnake KJ, Schaeren S, Jeanneret B (2006) Dynamic stabilization in addition to decompression for lumbar stenosis with degenerative spondylolisthesis. Spine 31:442–449. doi:10.1097/01.brs.0000200092.49001.6e

    Article  PubMed  Google Scholar 

  52. Schulte LT, Leistra F, Bullmann V, Osada N, Vieth V, Marquardt B, Lerner T, Liljenqvist U, Hachenberg L (2007) Disc height reduction in adjacent segments and clinical outcome 10 years after lumbar 360° fusion. Eur Spine J 16:2152–2158. doi:10.1007/s00586-007-0515-7

    Article  PubMed  Google Scholar 

  53. Senegas J (2002) Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system. Eur Spine J 11(Suppl 2):164–169

    Google Scholar 

  54. Sénégas J, Vital JM, Guerin J et al (1997) Stabilisation lombaire souple, instabilite vertebrales lombaires. Expans Sci Fr 12:4–32

    Google Scholar 

  55. Sengupta DK (2006) Point of view: dynamic stabilization in addition to decompression for lumbar spine stenosis with degenerative spondylolisthesis. Spine 31:450. doi:10.1097/01.brs.0000200051.24623.33

    Article  PubMed  Google Scholar 

  56. Singh K, An HS (2006) Motion preservation technologies: alternatives to spinal fusion. Am J Orthop 35:411–416

    PubMed  Google Scholar 

  57. Swanson KE, Lindsey DP, Hsu KY et al (2003) The effects of an interspinous implant on intervertebral disc pressures. Spine 28:26–32. doi:10.1097/00007632-200301010-00008

    Article  PubMed  Google Scholar 

  58. Umehara S, Zindrick MR, Patwardhan AG et al (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine 25:1617–1624. doi:10.1097/00007632-200007010-00004

    Article  PubMed  CAS  Google Scholar 

  59. Whitecloud TSIII, Davis JM, Olive PM (1994) Operative treatment of the degenerated segment adjacent to a lumbar fusion. Spine 19:531–536

    Article  PubMed  Google Scholar 

  60. Weihofer SL, Guyer RD, Herbert M et al (1995) Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine 20:526–531. doi:10.1097/00007632-199503010-00004

    Article  Google Scholar 

  61. Wiltse LL, Radecki SE, Biel HM et al (1999) Comparative study of the incidence and severity of degenerative change in the transition zones after instrumented versus noninstrumented fusions of the lumbar spine. J Spinal Disord 12:27–33. doi:10.1097/00002517-199902000-00004

    Article  PubMed  CAS  Google Scholar 

  62. Wiseman C, Lindsey DP, Fredrick AD et al (2005) The effect of an interspinous process implant on facet loading during extension. Spine 15(30):903–907. doi:10.1097/01.brs.0000158876.51771.f8

    Article  Google Scholar 

  63. Zhu SH, McCarthy ID, McGregor AH, Coombs RR, Hughes SP (2000) Geometrical dimensions of the lower lumbar vertebra. Eur Spine J 9(3):242–248

    Article  Google Scholar 

  64. Zucherman JF, Hsu KY, Hartjen CA et al (2004) A prospective randomized multi-center study for the treatment of lumbar spinal stenosis with the X STOP interspinous implant: 1-year results. Eur Spine J 13:22–31. doi:10.1007/s00586-003-0581-4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Korovessis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korovessis, P., Repantis, T., Zacharatos, S. et al. Does Wallis implant reduce adjacent segment degeneration above lumbosacral instrumented fusion?. Eur Spine J 18, 830–840 (2009). https://doi.org/10.1007/s00586-009-0976-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-0976-y

Keywords

Navigation