Skip to main content
Log in

Altered disc pressure profile after an osteoporotic vertebral fracture is a risk factor for adjacent vertebral body fracture

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

This study investigated the effect of endplate deformity after an osteoporotic vertebral fracture in increasing the risk for adjacent vertebral fractures. Eight human lower thoracic or thoracolumbar specimens, each consisting of five vertebrae were used. To selectively fracture one of the endplates of the middle VB of each specimen a void was created under the target endplate and the specimen was flexed and compressed until failure. The fractured vertebra was subjected to spinal extension under 150 N preload that restored the anterior wall height and vertebral kyphosis, while the fractured endplate remained significantly depressed. The VB was filled with cement to stabilize the fracture, after complete evacuation of its trabecular content to ensure similar cement distribution under both the endplates. Specimens were tested in flexion-extension under 400 N preload while pressure in the discs and strain at the anterior wall of the adjacent vertebrae were recorded. Disc pressure in the intact specimens increased during flexion by 26 ± 14%. After cementation, disc pressure increased during flexion by 15 ± 11% in the discs with un-fractured endplates, while decreased by 19 ± 26.7% in the discs with the fractured endplates. During flexion, the compressive strain at the anterior wall of the vertebra next to the fractured endplate increased by 94 ± 23% compared to intact status (p < 0.05), while it did not significantly change at the vertebra next to the un-fractured endplate (18.2 ± 7.1%, p > 0.05). Subsequent flexion with compression to failure resulted in adjacent fracture close to the fractured endplate in six specimens and in a non-adjacent fracture in one specimen, while one specimen had no adjacent fractures. Depression of the fractured endplate alters the pressure profile of the damaged disc resulting in increased compressive loading of the anterior wall of adjacent vertebra that predisposes it to wedge fracture. This data suggests that correction of endplate deformity may play a role in reducing the risk of adjacent fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams MA, McNally DS, Wagstaff J, Goodship AE (1993) Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral body: a cause of disc failure. Eur Spine J 1:214–221. doi:10.1007/BF00298362

    Article  CAS  PubMed  Google Scholar 

  2. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78(6):965–972. doi:10.1302/0301-620X78B6.1287

    Article  PubMed  CAS  Google Scholar 

  3. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25(13):1625–1636. doi:10.1097/00007632-200007010-00005

    Article  PubMed  CAS  Google Scholar 

  4. Ananthakrishnan D, Berven S, Deviren V et al (2005) The effect on anterior column loading due to different vertebral augmentation techniques. Clin Biomech (Bristol, Avon) 20:25–31. doi:10.1016/j.clinbiomech.2004.09.004

    Article  Google Scholar 

  5. Baroud G, Nemes J, Heini P, Steffen T (2003) Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J 12(4):421–426. doi:10.1007/s00586-002-0512-9

    Article  PubMed  CAS  Google Scholar 

  6. Belkoff SM, Mathis JM, Deramond H et al (2001) An ex vivo biomechanical evaluation of hydroxyapatite cement for use with kyphoplasty. AJNR Am J Neuroradiol 22:1212–1216

    PubMed  CAS  Google Scholar 

  7. Belkoff SM, Mathis JM, Fenton DC et al (2001) An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine 26:151–156. doi:10.1097/00007632-200101150-00008

    Article  PubMed  CAS  Google Scholar 

  8. Berlemann U, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty: a biomechanical investigation. J Bone Joint Surg Br 84:748–752. doi:10.1302/0301-620X.84B5.11841

    Article  PubMed  CAS  Google Scholar 

  9. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828. doi:10.1359/jbmr.1999.14.5.821

    Article  PubMed  CAS  Google Scholar 

  10. Farooq N, Park JC, Pollintine P, Annesley-Williams DJ, Dolan P (2005) Can vertebroplasty restore normal load-bearing to fractured vertebrae? Spine 30(15):1723–1730. doi:10.1097/01.brs.0000171906.01906.07

    Article  PubMed  Google Scholar 

  11. Fribourg D, Tang C, Sra P, Delamarter R, Bae H (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine 29(20):2270–2277. doi:10.1097/01.brs.0000142469.41565.2a

    Article  PubMed  Google Scholar 

  12. Gaitanis IN, Carandang G, Phillips FM, Magovern B, Ghanayem AJ, Voronov LI et al (2005) Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension. Spine J 5(1):45–54. doi:10.1016/j.spinee.2004.05.248

    Article  PubMed  Google Scholar 

  13. Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P (2000) Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology 39:1410–1414. doi:10.1093/rheumatology/39.12.1410

    Article  PubMed  CAS  Google Scholar 

  14. Hadjipavlou AG, Tzermiadianos MN, Katonis PG, Szpalski M (2005) Percutaneous vertebroplasty and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures and osteolytic tumours. J Bone Joint Surg Br 87(12):1595–1604. doi:10.1302/0301-620X.87B12.16074

    Article  PubMed  CAS  Google Scholar 

  15. Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K (1999) Surface strain distribution on thoracic and lumbar vertebrae under axial compression. Spine 24:1197–1202. doi:10.1097/00007632-199906150-00005

    Article  PubMed  CAS  Google Scholar 

  16. Hulme PA, Krebs J, Ferguson SJ, Berlemann U (2006) Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine 31(17):1983–2001. doi:10.1097/01.brs.0000229254.89952.6b

    Article  PubMed  Google Scholar 

  17. Kayanja MM, Ferrara LA, Lieberman IH (2004) Distribution of anterior cortical shear strain after a thoracic wedge compression fracture. Spine J 4(1):76–87. doi:10.1016/j.spinee.2003.07.003

    Article  PubMed  Google Scholar 

  18. Kayanja MM, Togawa D, Lieberman IH (2005) Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine. Spine J 5(1):55–63. doi:10.1016/j.spinee.2004.08.005

    Article  PubMed  Google Scholar 

  19. Kim SH, Kang HS, Choi JA, Ahn JM (2004) Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Acta Radiol 45(4):440–445. doi:10.1080/02841850410005615

    Article  PubMed  CAS  Google Scholar 

  20. Kurowski P, Kubo A (1986) The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae. Spine 11:726–731. doi:10.1097/00007632-198609000-00012

    Article  PubMed  CAS  Google Scholar 

  21. Lavelle WF, Cheney R (2006) Recurrent fracture after vertebral kyphoplasty. Spine J 6(5):488–493. doi:10.1016/j.spinee.2005.10.013

    Article  PubMed  Google Scholar 

  22. Ledlie JT, Renfro MB (2006) Kyphoplasty treatment of vertebral fractures: 2-year outcomes show sustained benefits. Spine 31(1):57–64. doi:10.1097/01.brs.0000192687.07392.f1

    Article  PubMed  Google Scholar 

  23. Lee WS, Sung KH, Jeong HT et al (2006) Risk factors of developing new symptomatic vertebral compression fractures after percutaneous vertebroplasty in osteoporotic patients. Eur Spine J 15(12):1777–1783. doi:10.1007/s00586-006-0151-7

    Article  PubMed  Google Scholar 

  24. Legroux-Gerot I, Lormeau C, Boutry N, Cotten A, Duquesnoy B, Cortet B (2004) Long-term follow-up of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Clin Rheumatol 23(4):310–317. doi:10.1007/s10067-004-0914-7

    Article  PubMed  Google Scholar 

  25. Lin HS, Liu YK, Adams KH (1978) Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J Bone Joint Surg 60(1):41–55

    PubMed  CAS  Google Scholar 

  26. Lin CC, Chen IH, Yu TC, Chen A, Yen PS (2007) New symptomatic compression fracture after percutaneous vertebroplasty at the thoracolumbar junction. AJNR Am J Neuroradiol 28(6):1042–1045. doi:10.3174/ajnr.A0520

    Article  PubMed  CAS  Google Scholar 

  27. Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285(3):320–323. doi:10.1001/jama.285.3.320

    Article  PubMed  CAS  Google Scholar 

  28. Liu L, Pei F, Song Y et al (2002) The influence of the intervertebral disc on stress distribution of the thoracolumbar vertebrae under destructive load. Chin J Traumatol 5:279–283

    PubMed  Google Scholar 

  29. Luo J, Skrzypiec DM, Pollintine P, Adams MA, Annesley-Williams DJ, Dolan P (2007) Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Bone 40(4):1110–1119. doi:10.1016/j.bone.2006.11.021

    Article  PubMed  CAS  Google Scholar 

  30. Melton LJ III, Atkinson EJ, Cooper C, O’Fallon WM, Riggs BL (1999) Vertebral fractures predict subsequent fractures. Osteoporos Int 10:214–221. doi:10.1007/s001980050218

    Article  PubMed  Google Scholar 

  31. Nachemson AL (1981) Disc pressure measurements. Spine 6(1):93–97. doi:10.1097/00007632-198101000-00020

    Article  PubMed  CAS  Google Scholar 

  32. Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:1003–1009. doi:10.1097/00007632-199905150-00014

    Article  PubMed  CAS  Google Scholar 

  33. Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ et al (2003) Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res 21:540–546. doi:10.1016/S0736-0266(02)00202-4

    Article  PubMed  Google Scholar 

  34. Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit, finite element analysis. Spine 28:991–996. doi:10.1097/00007632-200305150-00006

    Article  PubMed  Google Scholar 

  35. Pongchaiyakul C, Nguyen ND, Jones G et al (2005) Asymptomatic vertebral deformity as a major risk factor for subsequent fractures and mortality: a long-term prospective study. J Bone Miner Res 20(8):1349–1355. doi:10.1359/JBMR.050317

    Article  PubMed  Google Scholar 

  36. Ranu HS (1990) Measurement of pressures in the nucleus and within the annulus of the human spinal disc due to extreme loading. Proc Inst Mech Eng [H] 204:141–145. doi:10.1243/PIME_PROC_1990_204_248_02

    CAS  Google Scholar 

  37. Rohlmann A, Zander T, Bergmann G (2006) Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty. Eur Spine J 15(8):1255–1264. doi:10.1007/s00586-005-0018-3

    Article  PubMed  Google Scholar 

  38. Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3(3):120–126. doi:10.1007/BF01623272

    Article  PubMed  CAS  Google Scholar 

  39. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24(23):2468–2474. doi:10.1097/00007632-199912010-00008

    Article  PubMed  CAS  Google Scholar 

  40. Shah JS, Hampson WG, Jayson MI (1978) The distribution of surface strain in the cadaveric lumbar spine. J Bone Joint Surg 60-B(2):246–251

    CAS  Google Scholar 

  41. Shindle MK, Gardner MJ, Koob J, Bukata S, Cabin JA, Lane JM (2006) Vertebral height restoration in osteoporotic compression fractures: kyphoplasty balloon tamp is superior to postural correction alone. Osteoporos Int 17(12):1815–1819. doi:10.1007/s00198-006-0195-x

    Article  PubMed  CAS  Google Scholar 

  42. Silverman SL (1992) The clinical consequences of vertebral compression fractures. Bone 13(supp 1):261–267. doi:10.1016/8756-3282(92)90193-Z

    Google Scholar 

  43. Sornay-Rendu E, Munoz F, Duboeuf F, Delmas PD (2004) Disc space narrowing is associated with an increased vertebral fracture risk in postmenopausal women: the OFELY Study. J Bone Miner Res 19(12):1994–1999

    Article  PubMed  Google Scholar 

  44. Stanley SK, Ghanayem AJ, Voronov LI, Havey RM, Paxinos O, Carandang G et al (2004) Flexion-extension response of the thoracolumbar spine under compressive follower preload. Spine 29(22):E510–E514. doi:10.1097/01.brs.0000145417.94357.39

    Article  PubMed  Google Scholar 

  45. Tanigawa N, Komemushi A, Kariya S, Kojima H, Shomura Y, Sawada S (2006) Radiological follow-up of new compression fractures following percutaneous vertebroplasty. Cardiovasc Intervent Radiol 29(1):92–96. doi:10.1007/s00270-005-0097-x

    Article  PubMed  Google Scholar 

  46. The European Prospective Osteoporosis Study (EPOS) Group (2003) Determinants of the size of incident vertebral deformities in European men and women in the sixth to ninth decades of age: the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 18:1664–1673. doi:10.1359/jbmr.2003.18.9.1664

    Article  Google Scholar 

  47. Tomita S, Kin A, Yazu M, Abe M (2003) Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J Orthop Sci 8:192–197. doi:10.1007/s007760300032

    Article  PubMed  CAS  Google Scholar 

  48. Trout AT, Kallmes DF, Kaufmann TJ (2006) New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol 27(1):217–223

    PubMed  CAS  Google Scholar 

  49. Trout AT, Kallmes DF, Layton KF, Thielen KR, Hentz JG (2006) Vertebral endplate fractures: an indicator of the abnormal forces generated in the spine after vertebroplasty. J Bone Miner Res 21(11):1797–1802. doi:10.1359/jbmr.060723

    Article  PubMed  Google Scholar 

  50. Uppin A, Hirsch J, Centenera L, Pfiefer B, Pazianos A, Choi I (2003) Occurrence of new vertebral fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226:119–124. doi:10.1148/radiol.2261011911

    Article  PubMed  Google Scholar 

  51. Voormolen MH, Lohle PN, Juttmann JR et al (2006) The risk of new osteoporotic vertebral compression fractures in the year after percutaneous vertebroplasty. J Vasc Interv Radiol 17(1):71–76

    Article  PubMed  Google Scholar 

  52. Yuan H, Brown C, Phillips FM (2004) Osteoporotic spinal deformity: a biomechanical rationale for the clinical consequences and treatment of vertebral body compression fractures. J Spinal Disord 17:236–242. doi:10.1097/00024720-200406000-00012

    Article  Google Scholar 

Download references

Acknowledgments

Institutional research support provided by the Department of Veterans Affairs, Washington, DC, and Kyphon Inc., Sunnyvale, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash G. Patwardhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzermiadianos, M.N., Renner, S.M., Phillips, F.M. et al. Altered disc pressure profile after an osteoporotic vertebral fracture is a risk factor for adjacent vertebral body fracture. Eur Spine J 17, 1522–1530 (2008). https://doi.org/10.1007/s00586-008-0775-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0775-x

Keywords

Navigation