Skip to main content
Log in

Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: results in 206 thoracolumbar spine surgeries

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The objective of this study was to improve upon leg somatosensory-evoked potential (SEP) monitoring that halves paraplegia risk but can be slow, miss or falsely imply motor injury and omits arm and decussation assessment. We applied four-limb transcranial muscle motor-evoked potential (MEP) and optimized peripheral/cortical SEP monitoring with decussation assessment in 206 thoracolumbar spine surgeries under propofol/opioid anesthesia. SEPs were optimized to minimal averaging time that determined feedback intervals between MEP/SEP sets. Generalized changes defined systemic alterations. Focal decrements (MEP disappearance and/or clear SEP reduction) defined neural compromise and prompted intervention. They were transient (quickly resolved) or protracted (>40 min). Arm and leg MEP/SEP monitorability was 100% and 98/97% (due to neurological pathology). Decussation assessment disclosed sensorimotor non-decussation requiring ipsilateral monitoring in six scoliosis surgeries (2.9%). Feedback intervals were 1–3 min. Systemic changes never produced injury regardless of degree. They were gradual, commonly included MEP/SEP fade and sometimes required large stimulus increments to maintain MEPs or produced >50% SEP reductions. Focal decrements were abrupt; their positive predictive value for injury was 100% when protracted and 13% when transient. Six transient arm decrements predicted one temporary radial nerve injury; five suggested arm neural injury prevention (2.4%). There were 15 leg decrements: six MEP-only, four MEP before SEP, three simultaneous and two SEP-only. Five were protracted, predicting four temporary cord injuries (three motor, one Brown–Sequard) and one temporary radiculopathy. Ten were transient, predicting one temporary sensory cord injury; nine suggested cord injury prevention (4.4%). Two radiculopathies and one temporary delayed paraparesis were unpredicted. The methods are reliable, provide technical/systemic control, adapt to non-decussation and improve spinal cord and arm neural protection. SEP optimization speeds feedback and MEPs should further reduce paraplegia risk. Radiculopathy and delayed paraparesis can evade prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. American Electroencephalographic Society (1994) Guideline eleven: guidelines for intraoperative monitoring of sensory evoked potentials. J Clin Neurophysiol 11(1):77–87

    Article  Google Scholar 

  2. Bosley TM, Salih MA, Jen JC et al (2005) Neurologic features of horizontal gaze palsy and progressive scoliosis with mutations in ROBO3. Neurology 64(7):1196–1203

    PubMed  CAS  Google Scholar 

  3. Calancie B, Harris W, Broton JG et al (1998) “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg 88(3):457–470

    Article  PubMed  CAS  Google Scholar 

  4. Dawson EG, Sherman JE, Kanim LE et al (1991) Spinal cord monitoring: results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine 16(8 Suppl):S361–S364

    PubMed  CAS  Google Scholar 

  5. Deletis V (2002) Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system. In: Deletis V, Shils JL (eds) Neurophysiology in neurosurgery. Academic, CA, pp 25–51

    Google Scholar 

  6. Holdefer RN, Sadleir R, Russell MJ (2006) Predicted current densities in the brain during transcranial electrical stimulation. Clin Neurophysiol 117(6):1388–1397

    Article  PubMed  CAS  Google Scholar 

  7. Iwasaki H, Tamaki T, Yoshida M, Ando M, Yamada H, Tsutsui S, Takami M (2003) Efficacy and limitations of current methods of intraoperative spinal cord monitoring. J Orthop Sci 8(5):635–642

    Article  PubMed  Google Scholar 

  8. Kalkman CJ, ten Brink SA, Been HD et al (1991) Variability of somatosensory cortical evoked potentials during spinal surgery: effects of anesthetic technique and high-pass digital filtering. Spine 16(8):924–929

    Article  PubMed  CAS  Google Scholar 

  9. Langeron O, Vivien B, Paqueron X et al (1999) Effects of propofol, propofol-nitrous oxide and midazolam on cortical somatosensory evoked potentials during sufentanil anaesthesia for major spinal surgery. Br J Anaesth 82(3):340–345

    PubMed  CAS  Google Scholar 

  10. Leppanen RE, American Society of Neurophysiological Monitoring (2005) Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses: a position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput 19(6):437–461

    Article  PubMed  Google Scholar 

  11. Lesser RP, Raudzens P, Luders H et al (1986) Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 19(1):22–25

    Article  PubMed  CAS  Google Scholar 

  12. Lyon R, Feiner J, Lieberman JA (2005) Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol 17(1):13–19

    PubMed  Google Scholar 

  13. MacDonald DB (2001) Individually optimizing posterior tibial somatosensory evoked potential P37 scalp derivations for intraoperative monitoring. J Clin Neurophysiol 18(4):364–371

    Article  PubMed  CAS  Google Scholar 

  14. MacDonald DB, Janusz M (2002) An approach to intraoperative monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol 19(1):43–54

    Article  PubMed  Google Scholar 

  15. MacDonald DB (2002) Safety of intraoperative transcranial electric stimulation motor evoked potential monitoring. J Clin Neurophysiol 19(5):416–429

    Article  PubMed  Google Scholar 

  16. MacDonald DB, Al-Zayed Z, Khodeir I, Stigsby B (2003) Monitoring scoliosis surgery with combined transcranial electric motor and cortical somatosensory evoked potentials from the lower and upper extremities. Spine 28(2):194–203

    Article  PubMed  Google Scholar 

  17. MacDonald DB, Streletz L, Al-Zayed Z, Abdool S, Stigsby B (2004) Intraoperative neurophysiologic discovery of uncrossed sensory and motor pathways in a patient with horizontal gaze palsy and scoliosis. Clin Neurophysiol 115(3):576–582

    Article  PubMed  CAS  Google Scholar 

  18. MacDonald DB, Stigsby B, Al-Zayed Z (2004) A comparison between derivation optimization and Cz’-FPz for posterior tibial P37 somatosensory evoked potential intraoperative monitoring. Clin Neurophysiol 115:1925–1930

    Article  PubMed  CAS  Google Scholar 

  19. MacDonald DB, Al Zayed Z, Stigsby B (2005) Tibial somatosensory evoked potential intraoperative monitoring: Recommendations based on signal to noise ratio analysis of popliteal fossa, optimized P37, standard P37 and P31 potentials. Clin Neurophysiol 116(8):1858–1869

    Article  PubMed  CAS  Google Scholar 

  20. MacDonald DB (2006) Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput 20(5):347–377

    Article  PubMed  Google Scholar 

  21. MacDonald DB, Dong CC (2006) Spinal cord monitoring of descending aortic procedures. In: Nuwer MR (eds) Monitoring neural function during surgery: handbook of clinical neurophysiology (in press)

  22. MacDonald DB, Deletis V (2006) Safety issues during surgical monitoring. In: Nuwer MR (eds) Monitoring neural function during surgery: handbook of clinical neurophysiology (in press)

  23. Nuwer MR, Dawson EG, Carlson LG et al (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96(1):6–11

    Article  PubMed  CAS  Google Scholar 

  24. O’Brien MF, Lenke LG, Bridwell KH et al (1994) Evoked potential monitoring of the upper extremities during thoracic and lumbar spinal deformity surgery: a prospective study. J Spinal Disord 7(4):277–284

    Article  PubMed  CAS  Google Scholar 

  25. Pathak KS, Amaddio MD, Scoles PV et al (1989) Effects of halothane, enflurane, and isoflurane in nitrous oxide on multilevel somatosensory evoked potentials. Anesthesiology 70(2):207–212

    Article  PubMed  CAS  Google Scholar 

  26. Pechstein U, Nadstawek J, Zentner J et al (1998) Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol 108(2):175–181

    Article  PubMed  CAS  Google Scholar 

  27. Pelosi L, Stevenson M, Hobbs GJ et al (2001) Intraoperative motor evoked potentials to transcranial electrical stimulation during two anaesthetic regimens. Clin Neurophysiol 112(6):1076–1087

    Article  PubMed  CAS  Google Scholar 

  28. Pelosi L, Lamb J, Grevitt M, Mehdian SMH, Webb JK, Blumhardt LD (2002) Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 113:1082–1091

    Article  PubMed  Google Scholar 

  29. Quiñones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT, McDermott MW, Weinstein PR (2005) Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery 56(5):982–993

    PubMed  Google Scholar 

  30. Schwartz DM, Drummond DS, Hahn M et al (2000) Prevention of positional brachial plexopathy during surgical correction of scoliosis. J Spinal Disord 13(2):178–182

    Article  PubMed  CAS  Google Scholar 

  31. Shahin GM, Hamerlijnck RP, Schepens MA et al (1996) Upper and lower extremity somatosensory evoked potential recording during surgery for aneurysms of the descending thoracic aorta. Eur J Cardiothorac Surg 10(5):299–304

    Article  PubMed  CAS  Google Scholar 

  32. Taniguchi M, Nadstawek J, Pechstein U et al (1992) Total intravenous anesthesia for improvement of intraoperative monitoring of somatosensory evoked potentials during aneurysm surgery. Neurosurgery 31(5):891–897

    Article  PubMed  CAS  Google Scholar 

  33. Toleikis JR, American Society of Neurophysiological Monitoring (2005) Intraoperative monitoring using somatosensory evoked potentials: a position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput 19(3):241–258

    Article  PubMed  Google Scholar 

  34. Ulkatan S, Neuwirth M, Bitan F, Minardi C, Kokoszka A, Deletis V (2006) Monitoring of scoliosis surgery with epidurally recorded motor evoked potentials (D wave) revealed false results. Clin Neurophysiol 117(9):2093–2101

    Article  PubMed  CAS  Google Scholar 

  35. Vossler DG, Stonecipher T, Millen MD (2000) Femoral artery ischemia during spinal scoliosis surgery detected by posterior tibial nerve somatosensory-evoked potential monitoring. Spine 25(11):1457–1459

    Article  PubMed  CAS  Google Scholar 

  36. Wolfe DE, Drummond JC (1988) Differential effects of isoflurane/nitrous oxide on posterior tibial somatosensory evoked responses of cortical and subcortical origin. Anesth Analg 67(9):852–859

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The following technologists participated in the recordings: Mohammad Al Enazi, William Gene, Betty Jarvis, Judy Barclay, Andrew Warrington, Brent Hedgecock, Ameer Jan, Saima Naseer and Marela Bien.

Conflict of interest statement None of the authors has any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. MacDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, D.B., Al Zayed, Z. & Al Saddigi, A. Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: results in 206 thoracolumbar spine surgeries. Eur Spine J 16 (Suppl 2), 171–187 (2007). https://doi.org/10.1007/s00586-007-0426-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0426-7

Keywords

Navigation