Skip to main content

Advertisement

Log in

Intraoperative Monitoring of Segmental Spinal Nerve Root Function with Free-Run and Electrically-Triggered Electromyography and Spinal Cord Function with Reflexes and F-Responses

A Position Statement by The American Society of Neurophysiological Monitoring

  • Specialty Section on Surgical Neuromonitoring
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Background Context. Orthodromic ascending somatosensory evoked potentials and antidromic descending neurogenic somatosensory evoked potentials monitor spinal cord sensory function. Transcranial motor stimulation monitors spinal cord motor function but only activates 4–5% of the motor units innervating a muscle. Therefore, 95–96% of the motor spinal cord systems activating the motor units are not monitored. To provide more comprehensive monitoring, 11 techniques have been developed to monitor motor nerve root and spinal cord motor function. These techniques include: 1. neuromuscular junction monitoring, 2. recording free-run electromyography (EMG) for monitoring segmental spinal nerve root function, 3. electrical stimulation to help determine the correct placement of pedicle screws, 4. electrical impedance testing to help determine the correct placement of pedicle screws, 5. electrical stimulation of motor spinal nerve roots, 6. electrical stimulation to help determine the correct placement of iliosacral screws, 7. recording H-reflexes, 8. recording F-responses, 9. recording the sacral reflex, 10. recording intralimb and interlimb reflexes and 11. recording monosynaptic and polysynaptic reflexes during dorsal root rhizotomy. Objective. This paper is the position statement of the American Society of Neurophysiological Monitoring. It is the practice guideline for the intraoperative use of these 11 techniques. Methods. This statement is based on information presented at scientific meetings, published in the current scientific and clinical literature, and presented in previously-published guidelines and position statements of various clinical societies. Results. These 11 techniques when used in conjunction with somatosensory and transcranial motor evoked potentials provide a multiple-systems approach to spinal cord and nerve root monitoring. Conclusions. The techniques reviewed in this paper may be helpful to those wishing to incorporate these techniques into their monitoring program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nash CL, Lorig RA, Schatzinger LA, Brown RH. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res 1977; 126: 100–105.

    PubMed  Google Scholar 

  2. Cohen AR, Young W, Ransohoff J. Intraspinal localization of the somatosensory evoked potential. Neurosurgery 1981; 9(2): 157–162.

    CAS  PubMed  Google Scholar 

  3. Cusick JF, Myklebust JF, Larson SJ, Sances A Jr. Spinal cord potentials in the primate: Neural substrate. J Neurosurg 1978; 49(4): 551–557.

    CAS  PubMed  Google Scholar 

  4. Larson SJ, Sances A Jr., Christenson PC. Evoked somatosensory potentials in man. Arch Neurol 1966; 15(1): 88–93.

    CAS  PubMed  Google Scholar 

  5. Macon JB, Poletti CE, Sweet WH, Ojemann RG, Zervas NT. Conducted somatosensory evoked potentials during spinal surgery. Part 2: Clinical applications. J Neurosurg 1982; 57(3): 354–359.

    CAS  PubMed  Google Scholar 

  6. Jones SJ, Edgar MA, Ransford AO. Sensory nerve conduction in the human spinal cord: Epidural recordings made during spinal cord surgery. J Neurol Neurosurg Psychiatry 1982; 45: 446–452.

    CAS  PubMed  Google Scholar 

  7. York DH. Somatosensory evoked potentials in man: Differentiation of spinal pathways responsible for conduction from forelimbs vs hindlimb. Prog Neurobiol 1985; 25(1): 1–25.

    Article  CAS  PubMed  Google Scholar 

  8. Powers SK, Bolger CA, Edwards MS. Spinal cord pathways mediating somatosensory evoked potentials. J Neurosurg 1982; 57(4): 472–482.

    CAS  PubMed  Google Scholar 

  9. Simpson RK Jr., Blackburn JG, Martin HF III, Katz S. Peripheral nerve fibers and spinal cord pathway contribution to the somatosensory evoked potential. Exp Neurol 1981; 73(3): 700–715.

    Article  PubMed  Google Scholar 

  10. Leppanen RE, Tyler W. Evidence for parallel spinal cord conduction by dissociation of spinal and cortical somatosensory components: Case study. J Clin Neurophysiol 2000; 17(5): 531.

    Google Scholar 

  11. Hurlbert RJ, Fehlings MG, Moncada MS. Use of sensory-evoked potentials recorded from the human occiput for intraoperative physiologic monitoring of the spinal cord. Spine 1995; 20(21): 2318–2327.

    CAS  PubMed  Google Scholar 

  12. Dimitrijevic MR. Clinical neurophysiology of neural stimulation. In: Ducker TD, Brown RH, eds. Neurophysiology and standards of spinal cord monitoring. New York: Springer-Verlag, 1988: 11–15.

    Google Scholar 

  13. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature 1980; 285(5762): 227.

    Article  CAS  PubMed  Google Scholar 

  14. Jellinek D, Jewkes D, Symon L. Noninvasive intraoperative monitoring of motor evoked potentials under propofol anesthesia: Effects of spinal surgery on the amplitude and latency of motor evoked potentials. Neurosurgery 1991; 29(4): 551–557.

    CAS  PubMed  Google Scholar 

  15. Levy WJ. Use of motor evoked potentials as a monitoring tool. In: Stimulation of the brain and spinal cord: Fundamentals and clinical applications. New York: Alan R. Liss, Inc., 1988: 275–296.

    Google Scholar 

  16. Edmonds HL Jr., Paloheimo MP, Backman MH, Johnson JR, Holt RT, Shields CB. Transcranial magnetic motor evoked potentials (tcMMEP) for functional monitoring of motor pathways during scoliosis surgery. Spine 1989; 14(7): 683–686.

    PubMed  Google Scholar 

  17. Taniguchi M, Cedzich C, Schramm. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 1993; 32(2): 219–226.

    CAS  PubMed  Google Scholar 

  18. Leppanen RE, et al. Intraoperative interaction of descending transcranial electrical motor evoked potentials and ascending somatosensory evoked potentials and F-responses. Presented at: The Twelfth Annual Meeting of the American Society of Neurophysiological Monitoring. May 11, 2001, New Orleans, Louisiana.

  19. Owen JH, Bridwell KH, Grubb R, Jenny A, Allen B, Padberg AM, Shimon SM. The clinical application of neurogenic motor evoked potentials to monitor spinal cord function during surgery. Spine 1991; 16(8 Suppl): S385–S390.

    CAS  PubMed  Google Scholar 

  20. Leppanen RE, Madigan R, Sears C, Maguire J, Wallace S, Captain J. Intraoperative collision studies demonstrate descending spinal cord stimulated evoked potentials and ascending somatosensory evoked potentials are mediated through common pathways. Presented at: The Annual Meeting of the American Society of Neurophysiological Monitoring, May 2, 1997, Chicago, Illinois.

  21. Leppanen RE. Is the neurogenic motor evoked potential really a motor response? Presented at: The Annual Meeting of the American Academy of Clinical Neurophysiology, January 28, 1999, Sante Fe, New Mexico.

  22. Leppanen RE, Madigan R, Sears C, Maguire J, Wallace S, Captain J. Intraoperative collision studies demonstrate descending spinal cord stimulated evoked potentials and ascending somatosensory evoked potentials are mediated through common pathways. Clin Neurophysiol 1999; 110: 2265.

    Google Scholar 

  23. Toleikis JR, Skelly JP, Carlvin AO, Burkus JK. Spinally elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol 2000; 111(4): 736–742.

    Article  CAS  PubMed  Google Scholar 

  24. Leppanen RE. Faces of spine care. From the electrodiagnostics lab. Descending neurogenic evoked potentials. Spine J 2004; 4(6): 713–716.

    Google Scholar 

  25. Leppanen RE, Maguire J, Wallace S, et al. Intraoperative recording of long-latency lower extremity reflexes for the detection of suprasegmentally altered complex spinal cord electrophysiological processing. Presented at: The Southern EEG Society Meeting, May, 1992, Richmond, Virginia.

  26. Leppanen RE, Maguire J, Wallace S, Madigan R, Draper V. Intraoperative lower extremity reflex muscle activity as an adjunct to conventional somatosensory-evoked potentials and descending neurogenic monitoring in idiopathic scoliosis. Spine 1995; 20(17): 1872–1877.

    CAS  PubMed  Google Scholar 

  27. Leis AA, Zhou HH, Mehta M, Harkey HL 3rd, Paske WC. Behavior of the H-reflex in humans following mechanical perturbation or injury to rostral spinal cord. Muscle Nerve 1996; 19(11): 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  28. Leis AA. Physiology of acute spinal cord injury (SCI) in humans. I. Behavior of the H-reflex and F-wave immediately following injury to rostral spinal cord in humans. Presented at: The Annual Meeting of the American Academy of Clinical Neurophysiology, June 20–22, 1996, Chicago, IL.

  29. Maguire J, Wallace S, Madigan R, Leppanen RE, Draper V. Intraoperative long-latency reflex activity in idiopathic scoliosis demonstrates abnormal central processing: A possible etiology for idiopathic scoliosis. Spine 1993; 18(12): 1621–1626.

    CAS  PubMed  Google Scholar 

  30. Goodgold J, Eberstein A. Anatomy of nerve and muscle – a review. In: Electrodiagnosis of neuromuscular diseases. Baltimore: Williams & Wilkins, 1983: 2.

    Google Scholar 

  31. Maguire J, Wallace S, Madigan R, Leppanen R, Draper V. Evaluation of intrapedicular screw position using intraoperative evoked electromyography. Spine 1995; 20(9): 1068–1074.

    CAS  PubMed  Google Scholar 

  32. Collins VJ. Principles of anesthesia: General and regional anesthesia, 3rd ed., Vol. 2. Philadelphia: Lea & Febiger, 1993: 850–937.

    Google Scholar 

  33. Viby-Mogensen J. Neuromuscular monitoring. In: Miller RD, ed. Anesthesia, 6th ed. New York: Elsevier Churchhill Livingston, 2005: 1551–1570.

    Google Scholar 

  34. Kimura J. Anatomy and physiology of the neuromuscular junction. In: Electrodiagnosis in diseases of nerve and muscle: Principles and practice. Philadelphia: F.A. Davis, 1983: 171–188.

    Google Scholar 

  35. Dumitru D. Electrodiagnostic medicine. Baltimore: Mosby, 1995: 929–1029.

    Google Scholar 

  36. Gronert GA, Antognini JF, Pessah IN. Malignant hyperthermia. In: Miller RD, ed. Anesthesia, 5th ed. Philadelphia: Churchill Livingstone, 2000: 1033–1052.

    Google Scholar 

  37. Hayes A, Breslin D, Reid J, Mirakhur RK. Comparison of recovery following rapacuronium, with and without neostigmine, and succinylcholine. Anaesthesia 2000; 55(9): 859–863.

    Article  CAS  PubMed  Google Scholar 

  38. Calancie B, Madsen P, Lebwohl N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation: Initial clinical results. Spine 1994; 19(24): 2780–2786.

    CAS  PubMed  Google Scholar 

  39. Minahan RE, Riley III LH, Lukaczyk T, Cohen DB, Kostuik JP. The effect of neuromuscular blockade on pedicle screw stimulation thresholds. Spine 2000; 25(19): 2526–2530.

    CAS  PubMed  Google Scholar 

  40. Yamada H, Transfeldt EE, Tamaki T, Nishiura H, Taylor BA, Torres F, Iaizzo PA. General anesthetic effects on compound muscle action potentials elicited by single or dual spinal cord stimulation. J Spinal Disord 1995; 8(2): 157–162.

    CAS  PubMed  Google Scholar 

  41. Zhou HH, Mehta M, Leis AA. Spinal cord motoneuron excitability during isoflurane and nitrous oxide anesthesia. Anesthesiology 1997; 86(2): 302–307.

    CAS  PubMed  Google Scholar 

  42. Ravussin P, Tribolet N. Total intravenous anesthesia with propofol for burst suppression in cerebral aneurysm surgery: Preliminary report of 42 patients. Neurosurgery 1993; 32(2): 236–240.

    Google Scholar 

  43. Deletis V, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Neurosurgery 1997; 40(1): 88–93.

    CAS  PubMed  Google Scholar 

  44. Mavroudakis N, Vandesteene A, Brunko E, Defevrimont M, Zegers de Beyl D. Spinal and brain-stem SEPs and H-reflex during enflurane anesthesia. Electroencephalogr Clin Neurophysiol 1994; 92(1): 82–85.

    CAS  PubMed  Google Scholar 

  45. Mecheise K. The motor unit. In: Notermans SLH, ed. Current practice of clinical electromyography. Amsterdam: Elsevier, 1984: 83–117.

    Google Scholar 

  46. English AW, Wolf SL, Segal RL. Compartmentalization of muscles and their motor nuclei: The partitioning hypothesis. Phys Ther. 1993; 73(12): 857–867.

    Google Scholar 

  47. Ma MD, Liveson JA. Nerve conduction handbook. Philadelphia: F. A. Davis, 1983.

    Google Scholar 

  48. Basmajian JV, DeLuca CJ. Muscles alive. Their functions revealed by electromyography, 5th ed. Baltimore: Williams & Wilkins, 1985: 43.

    Google Scholar 

  49. Dumitru D. Electrodiagnostic medicine. Radiculopathies. Baltimore: Mosby, 1995: 523–584.

    Google Scholar 

  50. Myology. In: Warwick R, Williams PL, eds. Gray's Anatomy, 35th ed. Philadelphia: W.B. Saunders Company, 1973: 474–585.

  51. Neurology. Lumbar ventral rami. In: Warwick R, Williams PL, eds. Gray's Anatomy, 35th ed. Philadelphia: W.B. Saunders Company, 1973: 1050.

  52. Bouchard JM, Copty M, Langelier R. Preoperative diagnosis of conjoined roots anomaly with herniated lumbar disks. Surg Neurol 1978; 10(4): 229–231.

    CAS  PubMed  Google Scholar 

  53. Cannon BW, Hunter SE, Picaza JA. Nerve-root anomalies in lumbar-disc surgery. J Neurosurg 1962; 19: 208–214.

    CAS  PubMed  Google Scholar 

  54. McElvenny RT. Anomalies of the lumbar spinal cord and nerve roots. Clin Orthop Relat Res 1956; 2(8): 61–70.

    Google Scholar 

  55. Neidre A, MacNab I. Anomalies of the lumbosacral nerve roots: Review of 16 cases and classification. Spine 1983; 8(3): 294–299.

    CAS  PubMed  Google Scholar 

  56. Rask MR. Anomalous lumbosacral nerve roots associated with spondylolisthesis. Surg Neurol 1977; 8(2): 139–140.

    Google Scholar 

  57. Bogduck N, Twomey LT. Nerves of the lumbar spine. In: Clinical anatomy of the lumbar spine, 2nd ed. New York: Churchill Livingstone, 1991: 111–112.

    Google Scholar 

  58. Cohen MS, Wall EJ, Brown RA, Rydevik B, Garfin SR. Cauda equina anatomy II: Extrathecal nerve roots and dorsal root ganglia. Spine 1990; 15(12): 1248–1251.

    CAS  PubMed  Google Scholar 

  59. Wall EJ, Cohen MS, Massie JB, Rydevik B, Garfin SR. Cauda equina anatomy I: Intrathecal nerve root organization. Spine 1990; 15(12): 1244–1247.

    CAS  PubMed  Google Scholar 

  60. Bogduk N, Twomey LT. Clinical anatomy of the lumbar spine, 2nd ed. Melbourne: Churchill Livingstone, 1991.

    Google Scholar 

  61. Leffert RD. Brachial plexus injuries. New York: Churchill Livingstone, 1985.

    Google Scholar 

  62. Rydevik B, Brown MD, Lundborg G. Pathoanatomy and pathophysiology of nerve root compression. Spine 1984; 9(1): 7–15.

    CAS  PubMed  Google Scholar 

  63. Olmarker K. Spinal nerve root compression: Nutrition and function of the porcine cauda equina compressed in vivo. Acta Orth Scand Supp 1991; 242(62): 1–27.

    CAS  Google Scholar 

  64. Berthold CH, Carlstedt T, Corneliuson O. Anatomy of the nerve root at the central-peripheral transitional region. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R, eds. Peripheral neuropathy. Philadelphia: W.B. Saunders, 1984: 156–170.

    Google Scholar 

  65. Howe JF, Loeser JD, Calvin WH. Mechanosensitivity of dorsal root ganglia and chronically injured axons: A physiological basis for the radicular pain of nerve root compression. Pain 1977; 3(1): 25–41.

    Article  CAS  PubMed  Google Scholar 

  66. Dumitru D. Electrodiagnosis medicine. Needle electromyography. Baltimore: Mosby, 1995: 213.

    Google Scholar 

  67. Isley MR, Pearlman RC, Wadsworth JS. Recent advances in intraoperative neuromonitoring of spinal cord function: Pedicle screw stimulation techniques. Am J END Technol 1997; 37: 93–126.

    Google Scholar 

  68. Leppanen RE. Monitoring the motor system via spontaneous activity and reflex arc techniques. Presented at: Neurophysiology: Intraoperative Monitoring, Chicago Institute of Neurosurgery and Neuroresearch, October 21, 1994, Chicago, Illinois.

  69. Taborikova H, Sax DS. Motoneurone pool and the H-reflex. J Neurol Neurosurg Psychiat 1968; 31: 354–361.

    CAS  PubMed  Google Scholar 

  70. Beatty RM, McGuire P, Moroney JM, Holladay FP. Continuous intraoperative electromyographic recording during spinal surgery. J Neurosurg 1995; 82(3): 401–405.

    CAS  PubMed  Google Scholar 

  71. Holland NR, Kostuik JP. Continuous electromyogaphic monitoring to detect nerve root injury during thoracolumbar scoliosis surgery. Spine 1997; 22(21): 2547–2550.

    Article  CAS  PubMed  Google Scholar 

  72. Owen JH, Kostuik JP, Gornet M, Petr M, Skelly J, Smoes C, Szymanski J, Townes J, Wolfe F. The use of mechanically elicited electromyograms to protect nerve roots during surgery for spinal degeneration. Spine 1994; 19(15): 1704–1710.

    CAS  PubMed  Google Scholar 

  73. Legatt AD, Schroeder CE, Gill B, Goodrich JT. Electrical stimulation and multichannel EMG recording for identification of functional neural tissue during cauda equina surgery. Childs Nerv Syst 1992; 8(4): 185–189.

    Article  CAS  PubMed  Google Scholar 

  74. Leppanen RE. Intraoperative monitoring of trapezius function. From the electrodiagnostics lab ..., Faces of spine care. Spine J 2003; 3(3): 248.

    Google Scholar 

  75. Fan D, Schwartz DM, Vaccaro AR, Hillibrand AS, Albert TJ. Intraoperative neurophysiologic detection of iatrogenic C5 nerve root injury during laminectomy for cervical compression myelopathy. Spine 2002; 27(22): 2499–2502.

    Article  PubMed  Google Scholar 

  76. Matsuzaki H, Toiyama Y, Matsumoto F, Hoshino M, Kiuchi T, Toriyama S. Problems and solutions of pedicle screw plate fixation of lumbar spine. Spine 1990; 15: 1159–1165.

    CAS  PubMed  Google Scholar 

  77. Weinstein JN, Spratt KF, Spengler D, Brick C, Reid S. Spinal pedicle fixation: Reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine 1988; 13: 1012–1018.

    CAS  PubMed  Google Scholar 

  78. West JL III, Ogilvie JW, Bradford DS. Complications of variable screw plate screw fixation. Spine 1991; 16: 576–579.

    PubMed  Google Scholar 

  79. Krag MH, Beynnon BD, Pope MH, Frymoyer JW, Haugh LD, Weaver DL. An internal fixator for posterior application to short segments of the thoracic, lumbar or lumbosacral spine. Design and testing. Clin Orthop Relat Res 1986; 203: 75–98.

    Google Scholar 

  80. Louis R. Fusion of the lumbar and sacral spine by internal fixation with screws and plates. Clin Orthop Relat Res 1986; 203: 18–33.

    PubMed  Google Scholar 

  81. Luque ER. Interpeduncular segmental fixation. Clin Orthop Relat Res 1986; 203: 54–57.

    PubMed  Google Scholar 

  82. Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res 1984; 189: 125–141.

    PubMed  Google Scholar 

  83. Whitecloud TS, Skalley TC, Cook SD, Morgan EL. Roentgenographic measurement of pedicle screw penetration. Clin Orthop Relat Res 1989; 245: 57–68.

    PubMed  Google Scholar 

  84. Gepstein R, Brown MD. Somatosensory evoked potentials in lumbar nerve root decompression. Clin Orthop Relat Res 1989; 245: 69–71.

    PubMed  Google Scholar 

  85. Keim HA, Hajdu M, Gonzalez EG, Brand L, Balasubramanian E. Somatosensory evoked potentials as an aid in the diagnosis and Intraoperative management of spinal stenosis. Spine 1985; 10(4): 338–344.

    CAS  PubMed  Google Scholar 

  86. Cohen BA, Huizenga BA. Dermatomal monitoring for surgical correction of spondylolisthesis: A case report. Spine 1988; 13(10): 1125–1128.

    Google Scholar 

  87. Cohen BA, Major MR, Huizenga BA. Predictability of adequacy of spinal root decompression using evoked potentials. Spine 1991; 16(8 Suppl): S379–S384.

    CAS  PubMed  Google Scholar 

  88. Herron LD, Trippi AC, Gonyeau M. Intraoperative use of dermatomal somatosensory-evoked potentials in lumbar stenosis surgery. Spine 1987; 12(4): 379–383.

    CAS  PubMed  Google Scholar 

  89. Owen JH, Padberg AM, Spahr-Holland L, Bridwell KH, Keppler L, Steffee AD. Clinical correlation between degenerative spine disease and dermatomal somatosensory-evoked potentials in humans. Spine 1991; 16(6 Suppl): S201–S205.

    CAS  PubMed  Google Scholar 

  90. Toleikis JR, Carlvin AO, Shapiro DE, Schafer MF. The use of dermatomal somatosensory evoked potentials(DSSEPs) to monitor surgical procedures involving intrapedicular fixation of the lumbo-sacral spine. Presented at: The American Electroencephalographic Society Annual Meeting, December 12, 1991, Philadelphia, Pennsylvania.

  91. Calancie B, Lebwohl N, Madsen P, Klose KJ. Intraoperative evoked EMG monitoring in an animal model: A new technique for evaluating pedicle screw placement. Spine 1992; 17(10): 1229–1235.

    CAS  PubMed  Google Scholar 

  92. Calancie B, Madsen P, Lebwohl N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine 1994; 19(24): 2780–2786.

    CAS  PubMed  Google Scholar 

  93. Clements DH, Morledge DE, Martin WH, Betz RR. Evoked and spontaneous electromyography to evaluate lumbosacral pedicle screw placement. Spine 1996; 21(5): 600–604.

    Article  CAS  PubMed  Google Scholar 

  94. Darden BV II, Wood KE, Hatley MK, Owen JH, Kostuik J. Evaluation of pedicle screw insertion monitored by intraoperative evoked electromyography. J Spinal Disord 1996; 9(1): 8–16.

    PubMed  Google Scholar 

  95. Glassman SD, Dimar JR, Puno RM, Johnson JR, Shields CB, Linden RD. A prospective analysis of intraoperative electromyographic monitoring of pedicle screw placement with computed tomographic scan configuration. Spine 1995; 20(12): 1375–1379.

    CAS  PubMed  Google Scholar 

  96. Lenke LG, Padberg AM, Russo MH, Bridwell KH, Gelb DE. Triggered electromyographic threshold for accuracy of pedicle screw placement: An animal model and clinical correlation. Spine 1995; 20: 1585–1591.

    CAS  PubMed  Google Scholar 

  97. Skelly JP, Toleikis JR, Carlvin AO. Pedicle screw stimulation in a fluid environment. Presented at: The Tenth Annual Meeting of the American Society of Neurophysiological Monitoring, May 1, 1999, Denver, Colorado.

  98. Toleikis JR, Skelly JP, Carlvin AO, Toleikis SC, Bernard TN, Burkus JK, Burr ME, Dorchak JD, Goldman MS, Walsh TR. The usefulness of electrical stimulation for assessing pedicle screw placements. J Spinal Disord 2000; 13(4): 283–289.

    CAS  PubMed  Google Scholar 

  99. Myers BS, Hasty CC, Floberg DR, Hoffman RD, Leone BJ, Richardson WJ. Measurement of vertebral cortical integrity during pedicle exploration for intrapedicular fixation. Spine 1995; 20: 144–148.

    CAS  PubMed  Google Scholar 

  100. Darden BV II, Owen JH, Hatley MK, Kostuik J, Tooke SM. A comparison of impedance and electromyogram measurements in detecting the presence of pedicle wall breakthrough. Spine 1998; 23: 256–262.

    Article  PubMed  Google Scholar 

  101. Danesh-Clough T, Taylor P, Hodgson B, Walton M. The use of evoked EMG in detecting misplaced thoracolumbar pedicle screws. Spine 2001; 26(12): 1313–1316.

    Article  CAS  PubMed  Google Scholar 

  102. Shi YB, Binette M, Martin WH, Pearson JM, Hart RA. Electrical stimulation for intraoperative evaluation of thoracic pedicle screw placement. Spine 2003; 28(6): 595–601.

    Google Scholar 

  103. Kellam JP, McLaren A, Tile M. Internal fixation. In: Tile M, ed. Fractures of the pelvis and acetabulum, 2nd ed. Baltimore: Williams & Wilkins, 1995: 150–199.

    Google Scholar 

  104. Templeman D, Schmidt A, Freese J, Weisman I. Proximity of iliosacral screws to neurovascular structures after internal fixation. Clin Orthop Relat Res 1996; 329: 194–198.

    PubMed  Google Scholar 

  105. Matta JM, Tornetta P III. Internal fixation of unstable pelvic ring injuries. Clin Orthop Relat Res 1996; 329: 129–140.

    PubMed  Google Scholar 

  106. Webb LX, de Araujo W, Donofrio P, Santos C, Walker FO, Olympio MA, Haygood T. Continuous EMG monitoring for placement of percutaneous iliosacral screws. J Orthop Trauma. 2000; 14(4): 245–254.

    Article  CAS  PubMed  Google Scholar 

  107. Moed BR, Ahmad BK, Craig JG, Jacobson GP, Anders MJ. Intraoperative monitoring with stimulus-evoked electromyography during placement of iliosacral screws: An initial clinical study. J Bone Joint Surg Am. 1998; 80(4): 537–546.

    CAS  PubMed  Google Scholar 

  108. Grillner S. Control of locomotion in bipeds, tetrapods and fish. In: Brookhart JM, Mountcastle VB, eds. Handbook of physiology. The nervous system, Vol. II, Part 2, Motor control. Baltimore: Williams & Wilkins, 1981: 1179–1236.

    Google Scholar 

  109. Anderson B, Binder M. Spinal and supraspinal control of movement and posture. In: Patton HD, Fuchs AF, Hillie B, Scher AM, Steiner R, eds. Textbook of physiology: Excitable cells and neurophysiology. Philadelphia: W.B. Saunders Co., 1988: 563–581.

    Google Scholar 

  110. Binder M. Peripheral motor control: Spinal reflex actions of muscle, joint and cutaneous receptors. In: Patton HD, Fuchs AF, Hillie B, Scher AM, Steiner R, eds. Textbook of physiology: Excitable cells and neurophysiology. Philadelphia: W.B. Saunders Co., 1988: 522–548.

    Google Scholar 

  111. Lloyd DPC. Reflex action in relation to pattern and source of afferent stimulation. J Neurophysiology 1943; 6: 111–120.

    Google Scholar 

  112. Kimura J. Principles of nerve conduction studies. Electrodiagnosis in diseases of nerve and muscle: Principles and practice. Philadelphia: F.A. Davis, 1983: 83–104.

    Google Scholar 

  113. Meunier S, Pierrot-Deseillgny E, Simonetta M. Pattern of monosynaptic heteronymous 1a connections in the human lower limb. Exp Brain Res 1993; 96(3): 534–544.

    Article  CAS  PubMed  Google Scholar 

  114. Magladery JW, Porter WE, Park AM, Teasdall RD. Electrophysiological studies of nerve and reflex activity in normal man. IV. Two-neurone reflexes and identification of cortical action potentials from spinal roots and cord. Bull Johns Hopkins Hosp. 1951; 88(6): 499–519.

    CAS  PubMed  Google Scholar 

  115. Magladery JW, Teasdall RD, Park AM, Languth HW. Electrophysiological studies of reflex activity in patients with lesions of the nervous system. I. A comparison of spinal motoneurone excitability following afferent nerve volleys in normal persons and patients with upper motor neurone lesions. Bull Johns Hopkins Hosp. 1952; 91(4): 219–44.

    CAS  PubMed  Google Scholar 

  116. Leppanen RE. H-reflexes in the hand muscles following cervical spinal cord disease. From the electrodiagnostic lab ..., Faces of spine care. Spine J 2003; 3(5): 405.

    Google Scholar 

  117. Hugon M. Proprioceptive reflexes and the H-reflex. Methodology of Hoffman reflexes in man. In: Desmedt JE, ed. New developments in electromyography and clinical neurophysiology. Basel: Karger, 1973: 277–293.

    Google Scholar 

  118. Leppanen RE. Intraoperative reflexes can be used to monitor nerve root and spinal cord gray matter function. From the electrodiagnostic lab ..., Faces of spine care. Spine J 2004; 4(4): 480–481.

    Article  PubMed  Google Scholar 

  119. Schimsheimer RJ, de Visser BW, Kemp B. The flexor carpi radialis H-reflex in lesions of the sixth and seventh cervical nerve roots. J Neurol Neurosurg Psychiatry 1985; 48(5): 445–449.

    CAS  PubMed  Google Scholar 

  120. Roth G, Soichot P. Cancellation of single F wave by double stimulation in case of chronic denervation. Electroencephalogr Clin Neurophysiol. 1995; 97(3): 155–158.

    Article  CAS  PubMed  Google Scholar 

  121. Panayiotopoulos CP, Chroni E. F-waves in clinical neurophysiology: A review, methodological issues and overall value in peripheral neuropathies. Electroencephalogr Clin Neurophysiol. 1996; 101(5): 365–374.

    CAS  PubMed  Google Scholar 

  122. Binder MD. Peripheral motor control: Spinal reflex actions of muscle, joint and cutaneous receptors. In: Textbook of physiology: Excitable cells and neurophysiology. Philadelphia: WB Saunders, 1988: 543.

    Google Scholar 

  123. Hagbarth KE: Post-tetanic potentiation of myotatic reflexes in man. J Neurol Neurosurg Psychiatry 1962; 25: 1–10.

    CAS  PubMed  Google Scholar 

  124. Weber RJ. Motor and sensory conduction and entrapment syndromes. In: EW Johnson, ed. Practical electromyography, 2nd ed. Baltimore: Williams & Wilkins, 1988: 117.

    Google Scholar 

  125. Oh SJ. Anatomical and physiological basis for electromyography studies. In: Clinical electromyography: Nerve conduction studies, 2nd ed. Baltimore: Williams & Wilkins, 1993: 51.

    Google Scholar 

  126. Dumitru D. Electrodiagnostic medicine. Special nerve conduction techniques. Baltimore: Mosby, 1995: 203–204.

    Google Scholar 

  127. Schoenfeldt R, Groce R, Laurenzi B. Motor system monitoring during joint replacement operations. Neurosurgery 1987; 20(1): 197–198.

    CAS  PubMed  Google Scholar 

  128. Leis AA, Kronenberg MF, Stetkarova I, Paske WC, Stokic DS. Spinal motoneuron excitability after acute spinal cord injury in humans. Neurology 1996; 47(1): 231–237.

    CAS  PubMed  Google Scholar 

  129. Barnes CD, Joynt RJ, Schottelius BA. Motoneuron resting potentials in spinal shock. Am J Physiol. 1962; 203: 1113–1116.

    CAS  PubMed  Google Scholar 

  130. Walmsley B, Tracey DJ. The effect of transection and cold block of the spinal cord on synaptic transmission between 1a afferents and motoneurones. Neuroscience 1983; 9(2): 445–451.

    Article  CAS  PubMed  Google Scholar 

  131. Leppanen RE. Spinal cord injury changes caudal segmental spinal cord excitability resulting in changes to spinal cord signal processing and modulation of late response recordings. Spine J 2005; 5(1): 115–117.

    Article  PubMed  Google Scholar 

  132. Leppanen RE. From the electrodiagnostics lab: Where transcranial stimulation, H-reflexes and F-responses monitor cord function intraoperatively. Spine J 2004; 4(5): 601–603.

    Article  PubMed  Google Scholar 

  133. Hicks GE. The reliability and specificity of the Hoffman's Reflex during pediatric spinal instrumentations. J Clin Monit Comput 2004; 18(3): 210.

    Google Scholar 

  134. Curt A, Keck ME, Dietz V. Clinical value of F-wave recordings in traumatic cervical spinal cord injury. Electroencephalogr Clin Neurophysiol 1997; 105(3): 189–193.

    Article  CAS  PubMed  Google Scholar 

  135. Rechthand E. Bilateral bulbocavernosus reflexes: Crossing of nerve pathways or artifact? Muscle Nerve 1997; 20(5): 616–618.

    Article  CAS  PubMed  Google Scholar 

  136. Deletis V, Vodusek DB, Abbott R, Epstein FJ, Turndorf H. Intraoperative monitoring of the dorsal sacral roots: Minimizing the risk of iatrogenic micturition disorders. Neurosurgery 1992; 30(1): 72–75.

    CAS  PubMed  Google Scholar 

  137. Huang JC, Deletis V, Vodusek DB, Abbott R. Preservation of pudendal afferents in sacral rhizotomies. Neurosurgery 1997; 41(2): 411–415.

    Article  CAS  PubMed  Google Scholar 

  138. Corman ML. Physiologic and anatomical bases of continence. In: Colon and rectal surgery, 3rd ed. Philadelphia: J.B. Lippincott, 1993: 193.

    Google Scholar 

  139. Ghez C. The control of movement. In: Kandel ER, Schwartz JH, Jessell TM, eds. Principles of neural science, 3rd ed. East Norwalk, Connecticut: Appleton and Lange, 1991: 533–547.

    Google Scholar 

  140. Fasano VA, Barolat-Romana G, Zeme S, Squazzi A. Electrophysiological assessment of spinal circuits in spasticity by direct dorsal root stimulation. Neurosurgery. 1979; 4(2): 146–151.

    CAS  PubMed  Google Scholar 

  141. Peacock WJ, Arens LJ, Berman B. Cerebral palsy spasticity. Selective posterior rhizotomy. Pediatr Neurosci 1987; 13(2): 61–66.

    CAS  PubMed  Google Scholar 

  142. Staudt LA, Nuwer MR, Peacock WJ. Intraoperative monitoring during selective posterior rhizotomy: Technique and patient outcome. Electroencephalogr Clin Neurophysiol. 1995; 97(6): 296–309.

    Article  CAS  PubMed  Google Scholar 

  143. Peacock WJ, Staudt LA. Spasticity in cerebral palsy and the selective posterior rhizotomy procedure. J Child Neurol 1990; 5(3): 179–185.

    CAS  PubMed  Google Scholar 

  144. Harper CM, Nelson KR. Intraoperative electrophysiological monitoring in Children. J Clin Neurophysiol 1992; 9(3): 342–356.

    CAS  PubMed  Google Scholar 

  145. Lang FF, Deletis V, Cohen HW, Velasquez L, Abbott R. Inclusion of the S2 dorsal rootlets in functional posterior rhizotomy for spasticity in children with cerebral palsy. Neurosurgery 1994; 34(5): 847–853; discussion 853.

    Google Scholar 

  146. Logigian EL, Soriano SG, Herrmann DN, Madsen JR. Gentle dorsal root retraction and dissection can cause areflexia: Implications for intraoperative monitoring during “selective” partial dorsal root rhizotomy. Muscle Nerve 2001; 24(10): 1352–1358.

    Article  CAS  PubMed  Google Scholar 

  147. Park TS, Gaffney PE, Kaufman BA, Molleston MC. Selective lumbosacral dorsal rhizotomy immediately caudal to the conus medullaris for cerebral palsy. Neurosurgery 1993; 33(5): 929–933; discussion 933–934.

    Google Scholar 

  148. Infection control and the electrodiagnostic department; 1994 Guidelines. Am J EEG Technol 1995; 35: 3–36.

    Google Scholar 

  149. Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: Report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology 1997; 49(1): 277–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald E. Leppanen Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leppanen, R.E. Intraoperative Monitoring of Segmental Spinal Nerve Root Function with Free-Run and Electrically-Triggered Electromyography and Spinal Cord Function with Reflexes and F-Responses. J Clin Monit Comput 19, 437–461 (2005). https://doi.org/10.1007/s10877-005-0086-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-005-0086-2

Key Words

Navigation