Skip to main content

Advertisement

Log in

Intraoperative Motor Evoked Potential Monitoring: Overview and Update

  • Specialty Section on Surgical Neuromonitoring
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Amidst controversy about methodology and safety, intraoperative neurophysiology has entered a new era of increasingly routine transcranial and direct electrical brain stimulation for motor evoked potential (MEP) monitoring. Based on literature review and illustrative clinical experience, this tutorial aims to present a balanced overview for experienced practitioners, surgeons and anesthesiologists as well as those new to the field. It details the physiologic basis, indications and methodology of current MEP monitoring techniques, evaluates their safety, explores interpretive controversies and outlines some applications and results, including aortic aneurysm, intramedullary spinal cord tumor, spinal deformity, posterior fossa tumor, intracranial aneurysm and peri-rolandic brain surgeries. The many advances in motor system assessment achieved in the last two decades undoubtedly improve monitoring efficacy without unduly compromising safety. Future studies and experience will likely clarify existing controversies and bring further advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patton HD, Amassian VE. Single and multiple unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 1954; 17: 345–363.

    PubMed  CAS  Google Scholar 

  2. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature 1980; 285: 287.

    Google Scholar 

  3. Amassian VE. Animal and human motor system neurophysiology related to intraoperative monitoring. In: Deletis V, Shils JL, eds. Neurophysiology in neurosurgery. California: Academic Press, 2002: p. 3–23.

    Google Scholar 

  4. Barker AT, Freeston IL, Jalinous R, Jarratt JA. Magnetic stimulation of the human brain and peripheral nervous system: An introduction and the results of an initial clinical evaluation. Neurosurgery 1987; 20(1): 100–109.

    PubMed  CAS  Google Scholar 

  5. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC. The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 2004; 115(2): 255–266.

    PubMed  Google Scholar 

  6. Boyd SG, Rothwell JC, Cowan JM, Webb PJ. Morley T. Asselman P. Marsden CD. A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry 1986; 49(3): 251–257.

    PubMed  CAS  Google Scholar 

  7. Katayama Y, Tsubokawa T, Maejima S, Hirayama T, Yamamoto T. Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anesthesia. J Neurol Neurosurg Psych 1988; 51: 50–59.

    CAS  Google Scholar 

  8. Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Assessment of corticospinal and somatosensory conduction simultaneously during scoliosis surgery. Electroencephalogr Clin Neurophysiol 1992; 85(6): 388–396.

    PubMed  CAS  Google Scholar 

  9. Deletis V. Intraoperative monitoring of the functional integrity of the motor pathways. In: Devinsky O, Beric A, Dogali M, eds. Electrical and magnetic stimulation of the brain and spinal cord. New York: Raven Press Ltd., 1993: p. 201–214.

    Google Scholar 

  10. Machida M, Weinstein SL, Yamada T, Kimura J, Toriyama S. Dissociation of muscle action potentials and spinal somatosensory evoked potentials after ischemic damage of spinal cord. Spine 1988; 13(10): 1119–1124.

    PubMed  CAS  Google Scholar 

  11. Adams DC, Emerson RG, Heyer EJ, McCormick PC, Carmel PW, Stein BM, Farcy JP, Gallo EJ. Monitoring of intraoperative motor-evoked potentials under conditions of controlled neuromuscular blockade. Anesth Analg 1993; 77(5): 913–918.

    PubMed  CAS  Google Scholar 

  12. Taylor BA, Fennelly ME, Taylor A, Farrell J. Temporal summation—the key to motor evoked potential spinal cord monitoring in humans. J Neurol Neurosurg Psychiatry 1993; 56(1): 104–106.

    PubMed  CAS  Google Scholar 

  13. Owen JH, Laschinger J, Bridwell K, Shimon S, Nielsen C, Dunlap J, Kain C. Sensitivity and specificity of somatosensory and neurogenic-motor evoked potentials in animals and humans. Spine 1988; 13(10): 1111–1118.

    PubMed  CAS  Google Scholar 

  14. Minahan RE, Sepkuty JP, Lesser RP, Sponseller PD, Kostuik JP. Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol 2001; 112(8): 1442–1450.

    PubMed  CAS  Google Scholar 

  15. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 1993; 32(2): 219–226.

    PubMed  CAS  Google Scholar 

  16. Deletis V, Rodi Z, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol 2001; 112(3): 445–452.

    PubMed  CAS  Google Scholar 

  17. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA. Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol 1996; 100(5): 375–383.

    PubMed  CAS  Google Scholar 

  18. Pechstein U, Cedzich C, Nadstawek J, Schramm J. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 1996; 39(2): 335–343.

    PubMed  CAS  Google Scholar 

  19. Rodi Z, Deletis V, Morota N, Vodusek DB. Motor evoked potentials during brain surgery. Pflugers Arch 1996; 431(6 Suppl 2): R291–R292.

    PubMed  CAS  Google Scholar 

  20. Pechstein U, Nadstawek J, Zentner J, Schramm J. Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol 1998; 108(2): 175–181.

    PubMed  CAS  Google Scholar 

  21. Pelosi L, Stevenson M, Hobbs GJ, Jardine A, Webb JK. Intraoperative motor evoked potentials to transcranial electrical stimulation during two anaesthetic regimens. Clin Neurophysiol 2001; 112(6): 1076–1087.

    PubMed  CAS  Google Scholar 

  22. Scheufler KM, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg 2002; 96(3): 571–579.

    PubMed  CAS  Google Scholar 

  23. Chen Z. The effects of isoflurane and propofol on intraoperative neurophysiological monitoring during spinal surgery. J Clin Monit Comput 2004; 18(4): 303–308.

    PubMed  Google Scholar 

  24. Schmidt J, Hering W, Albrecht S. Total intravenous anesthesia with propofol and remifentanil. Results of a multicenter study of 6,161 patients. [German] Anaesthesist 2005; 54(1): 17–28.

    PubMed  CAS  Google Scholar 

  25. Langeloo DD, Lelivelt A, Journee HL, Slappendel R, de Kleuver M. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: A study of 145 patients. Spine 2003; 28(10): 1043–1050.

    PubMed  Google Scholar 

  26. Jacobs MJ, Elenbaas TW, Schurink GW, Mess WH, Mochtar B. Assessment of spinal cord integrity during thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 2002; 74(5): S1864–S1866.

    PubMed  Google Scholar 

  27. van Dongen EP, Schepens MA, Morshuis WJ, ter Beek HT, Aarts LP, de Boer A, Boezeman EH. Thoracic and thoracoabdominal aortic aneurysm repair: use of evoked potential monitoring in 118 patients. J Vasc Surg 2001; 34: 1035–1040.

    PubMed  Google Scholar 

  28. Weigang E, Hartert M, von Samson P, Sircar R, Pitzer K, Genstorfer J, Zentner J, Beyersdorf F. Thoracoabdominal aortic aneurysm repair: Interplay of spinal cord protecting modalities. Eur J Vasc Endovasc Surg 2005; 30: 624–631.

    PubMed  CAS  Google Scholar 

  29. Kerz T, Hennes HJ, Féve A, Decq P, Filipetti P, Duvaldestin P. Effects of propofol on H-reflex in humans. Anesthesiology 2001; 94(1): 32–37.

    PubMed  CAS  Google Scholar 

  30. Rehberg B, Grünewald M, Baars J, Fuegener K, Urban BW, Kox WJ. Monitoring of immobility to noxious stimulation during sevoflurane anesthesia using the spinal H-reflex. Anesthesiology 2004; 100(1): 44–50.

    PubMed  CAS  Google Scholar 

  31. Zentner J, Albrecht T, Heuser D. Influence of halothane, enflurane, and isoflurane on motor evoked potentials. Neurosurgery 1992; 31(2): 298–305.

    PubMed  CAS  Google Scholar 

  32. Zentner J, Thees C, Pechstein U, Scheufler KM, Wurker J, Nadstawek J. Influence of nitrous oxide on motor-evoked potentials. Spine 1997; 22(9): 1002–1006.

    PubMed  CAS  Google Scholar 

  33. Zhou HH, Jin TT, Qin B, Turndorf H. Suppression of spinal cord motoneuron excitability correlates with surgical immobility during isoflurane anesthesia. Anesthesiology 1998; 88(4): 955–961.

    PubMed  CAS  Google Scholar 

  34. Zhou HH, Zhu C. Comparison of isoflurane effects on motor evoked potential and F wave. Anesthesiology 2000; 93(1): 32–38.

    PubMed  CAS  Google Scholar 

  35. Sloan TB, Heyer EJ. Anesthesia for Intraoperative Neurophysiologic Monitoring of the Spinal Cord. J Clin Neurophysiol 2002; 19: 430–443.

    PubMed  Google Scholar 

  36. Quinones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT, McDermott MW, Weinstein PR. Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery 2005; 56(5): 982–993.

    PubMed  Google Scholar 

  37. Deletis V. Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system. In: Deletis V, Shils JL, eds. Neurophysiology in neurosurgery. California: Academic Press, 2002: p. 25–51.

    Google Scholar 

  38. MacDonald DB, Janusz M. An approach to intraoperative monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol 2002; 19: 43–54.

    PubMed  Google Scholar 

  39. MacDonald DB, Al Zayed Z, Khoudeir I, Stigsby B. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine 2003; 28(2): 194–203.

    PubMed  Google Scholar 

  40. Pelosi L, Lamb J, Grevitt M, Mehdian SMH, Webb JK, Blumhardt LD. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 2002; 113: 1082–1091.

    PubMed  Google Scholar 

  41. Tanaka S, Kobayashi I, Sagiuchi T, Takanashi J, Iwamoto K, Sato S, Fujii K. Compensation of intraoperative transcranial motor-evoked potential monitoring by compound muscle action potential after peripheral nerve stimulation. J Clin Neurophysiol 2005; 22(4): 271–274.

    PubMed  Google Scholar 

  42. de Haan P, Kalkman CJ. Spinal cord monitoring: somatosensory- and motor-evoked potentials. Anesthesiol Clin North America 2001; 19: 923–945.

    Article  PubMed  Google Scholar 

  43. Journee HL, Polak HE, de Kleuver M. Influence of electrode impedance on threshold voltage for transcranial electrical stimulation in motor evoked potential monitoring. Med Biol Eng Comput 2004; 42(4): 557–561.

    PubMed  CAS  Google Scholar 

  44. Watanabe K, Watanabe T, Takahashi A, Saito N, Hirato M, Sasaki T. Transcranial electrical stimulation through screw electrodes for intraoperative monitoring of motor evoked potentials. Technical note. J Neurosurg 2004; 100(1): 155–160.

    PubMed  Google Scholar 

  45. Szelényi A, Deletis V. Motor evoked potentials. J Neurosurg 2004; 101(3): 563–564.

    PubMed  Google Scholar 

  46. Neuloh G, Schramm J. Intraoperative Neurophysiology of Supratentorial procedures. In: Deletis V, Shils JL, eds. Neurophysiology in neurosurgery. California: Academic Press, 2002: 339–401.

    Google Scholar 

  47. Holderfer RN, Sadlier R, Russell MJ. Predicted current densities in the brain during transcranial electrical stimulation. Clin Neurophysiol 2006; 117: 1388–1397.

    Google Scholar 

  48. MacDonald DB, Stigsby B. Use of D waves in intraoperative monitoring. In: Proceedings of the symposium on intraoperative neurophysiology [Ljubjana Institute of Clinical Neurophysiology web site]. Oct 17, 2003;18–28. Available at: www.kclj.si/ikn/Dejavnosti/FAGA/2003/INVI2003.HTM Accessed Nov 12, 2003.

  49. Calancie B, Harris W, Broton JG, Alexeeva N, Green BA. “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg 1998; 88(3): 457–470.

    PubMed  CAS  Google Scholar 

  50. Bartley K, Woodforth IJ, Stephen JP, Burke D. Corticospinal volleys and compound muscle action potentials produced by repetitive transcranial stimulation during spinal surgery. Clin Neurophysiol 2002; 113(1): 78–90.

    PubMed  Google Scholar 

  51. MacDonald DB, Streletz L, Al-Zayed Z, Abdool S, Stigsby B. Intraoperative neurophysiologic discovery of uncrossed sensory and motor pathways in a patient with horizontal gaze palsy and scoliosis. Clin Neurophysiol 2004; 115(3): 576–582.

    PubMed  CAS  Google Scholar 

  52. Dong C, MacDonald DB, Akagami R, Westerberg B, Alkhani A, Kanaan I, Hassounah M. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 2005; 116(3): 588–596.

    PubMed  Google Scholar 

  53. Brocke J, Irlbacher K, Hauptmann B, Voss M, Brandt SA. Transcranial magnetic and electrical stimulation compared: does TES activate intracortical neuronal circuits? Clin Neurophysiol 2005; 116(12): 2748–2756.

    PubMed  CAS  Google Scholar 

  54. Ubags LH, Kalkman CJ, Been HD, Drummond JC. The use of a circumferential cathode improves amplitude of intraoperative electrical transcranial myogenic motor evoked responses. Anesth Analg 1996; 82(5): 1011–1014.

    PubMed  CAS  Google Scholar 

  55. MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 2002; 19(5): 416–429.

    PubMed  Google Scholar 

  56. Hausmann ON, Minb K, Boosb N, Ruetschc YA, Ernia T, Curta A. Transcranial electrical stimulation: significance of fast versus slow charge delivery for intra-operative monitoring. Clin Neurophysiol 2002; 113: 1532–1535.

    PubMed  Google Scholar 

  57. Deletis V, Isgum V, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 1. Recovery time of corticospinal tract direct waves elicited by pairs of transcranial electrical stimuli. Clin Neurophysiol 2001; 112(3): 438–444.

    PubMed  CAS  Google Scholar 

  58. Scheufler KM, Reinacher PC, Blumrich W, Zentner J, Priebe HJ. The modifying effects of stimulation pattern and propofol plasma concentration on motor-evoked potentials. Anesth Analg 2005; 100: 440–447.

    PubMed  CAS  Google Scholar 

  59. Novak K, de Camargo AB, Neuwirth M, Kothbauer K, Amassian VE, Deletis V. The refractory period of fast conducting corticospinal tract axons in man and its implications for intraoperative monitoring of motor evoked potentials. Clin Neurophysiol 2004; 115(8): 1931–1941.

    PubMed  Google Scholar 

  60. Noss RS, Ames C. Changing stimulation parameters for motor evoked potentials: A case study. J Clin Neurophysiol 2005; 22(3): 180–182.

    PubMed  Google Scholar 

  61. Journee HL, Polak HE, de Kleuver M, Langeloo DD, Postma AA. Improved neuromonitoring during spinal surgery using double-train transcranial electrical stimulation. Med Biol Eng Comput 2004; 42(1): 110–113.

    PubMed  CAS  Google Scholar 

  62. Andersson G, Ohlin A. Spatial facilitation of motor evoked responses in monitoring during spinal surgery. Clin Neurophysiol 1999; 110(4): 720–724.

    PubMed  CAS  Google Scholar 

  63. Erb TO, Ryhult SE, Duitmann E, Hasler C, Luetschg J, Frei FJ. Improvement of motor-evoked potentials by ketamine and spatial facilitation during spinal surgery in a young child. Anesth Analg 2005; 100: 1634–1636.

    PubMed  Google Scholar 

  64. Taniguchi M, Schramm J. Motor evoked potentials facilitated by an additional peripheral nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl 1991; 43: 202–211.

    PubMed  CAS  Google Scholar 

  65. Calancie B, Harris W, Brindle GF, Green BA, Landy HJ. Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction. J Neurosurg (Spine 1) 2001; 95: 161–168.

    CAS  Google Scholar 

  66. Turkof E, Millesi H, Turkof R, Pfundner P, Mayr N. Intraoperative electroneurodiagnostics (transcranial electrical motor evoked potentials) to evaluate the functional status of anterior spinal roots and spinal nerves during brachial plexus surgery. Plast Reconstr Surg 1997; 99(6): 1632–1641.

    PubMed  CAS  Google Scholar 

  67. Sala F, Krzan MJ, Deletis V. Intraoperative neurophysiological monitoring in pediatric neurosurgery: Why, when, how? Childs Nerv Syst 2002; 18(6–7): 264–287.

    PubMed  Google Scholar 

  68. Sala F, Lanteri P. Brain surgery in motor areas: The invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci 2003; 47(2): 79–88.

    PubMed  CAS  Google Scholar 

  69. Yamamoto T, Katayama Y, Nagaoka T, Kobayashi K, Fukaya C. Intraoperative monitoring of the corticospinal motor evoked potential (D-wave): Clinical index for postoperative motor function and functional recovery. Neurol Med Chir (Tokyo) 2004; 44(4): 170–180; discussion 181–22.

    Google Scholar 

  70. Szelényi A, Kothbauer K, de Camargo AB, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: Technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery 2005; 57(4 Suppl): 331–338.

    PubMed  Google Scholar 

  71. Kothbauer KF. Motor evoked potential monitoring for intramedullary spinal cord tumor surgery. In: Deletis V, Shils JL, eds. Neurophysiology in neurosurgery. California: Academic Press, 2002: p. 73–92.

    Google Scholar 

  72. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumor: A historical control study. Neurosurgery 2006; 58(6): In press.

  73. Iwasaki H, Tamaki T, Yoshida M, Ando M, Yamada H, Tsutsui S, Takami M. Efficacy and limitations of current methods of intraoperative spinal cord monitoring. J Orthop Sci 2003; 8(5): 635–642.

    PubMed  Google Scholar 

  74. Burke D, Bartley K, Woodforth IJ, Yakoubi A, Stephen JP. The effects of a volatile anaesthetic on the excitability of human corticospinal axons. Brain 2000; 123(Pt 5): 992–1000.

    PubMed  Google Scholar 

  75. Szelényi A, Bueno De Camargo A, Deletis V. Neurophysiological evaluation of the corticospinal tract by D-wave recordings in young children. Childs Nerv Syst 2003; 19: 30–34.

    PubMed  Google Scholar 

  76. Katayama Y, Tsubokawa T, Maejima S, Hirayama T, Yamamoto T. Corticospinal direct response in humans: Identification of the motor cortex during intracranial surgery under general anesthesia. J Neurol Neurosug Psychiatry 1988; 51(1): 50–59.

    Article  CAS  Google Scholar 

  77. Horikoshi T, Omata T, Uchida M, Asari Y, Nukui H. Usefulness and pitfalls of intraoperative spinal motor evoked potential recording by direct cortical electrical stimulation. Acta Neurochir (Wien) 2000; 142(3): 257–262.

    CAS  Google Scholar 

  78. Kondo R, Saito S, Kuroki A, Sato S, Katakura K, Kayama T. Significance and usefulness of corticospinal motor evoked potential monitoring for lesions adjacent to primary motor cortex. [Japanese] No To Shinkei - Brain & Nerve 2004; 56(6): 496–502.

    Google Scholar 

  79. Fujiki M, Furukawa Y, Kamida T, Anan M, Inoue R, Abe T, Kobayashi H. Intraoperative corticomuscular motor evoked potentials for evaluation of motor function: A comparison with corticospinal D and I waves. J Neurosurg 2006; 104: 85–92.

    PubMed  Google Scholar 

  80. MacDonald DB, Deletis V. Safety issues during surgical monitoring. In: Nuwer MR, ed. Monitoring neural function during surgery, handbook of clinical neurophysiology. 2006: In press.

  81. International Electrotechnical Commission (1998) IEC 60601-2-40 (Ed. 1): Medical electrical equipment—Part 2–40: Particular requirements for the safety of electromyographs and evoked response equipment [IEC web site]. Available at: www.iec.ch. Accessed 12 Dec 2005.

  82. Russell MJ, Gaetz M. Intraoperative electrode burns. J Clin Monit Comput 2004; 18(1): 25–32.

    PubMed  Google Scholar 

  83. Girvin JP. A review of basic aspects concerning chronic cerebral stimulation. In: Cooper IS, ed. Cerebellar stimulation in man. New York: Raven Press, 1978: p. 1–12.

    Google Scholar 

  84. Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J Neurosci Methods 2005; 141: 171–198.

    PubMed  Google Scholar 

  85. Gordon B, Lesser RP, Rance NE, Hart J Jr, Webber R, Uematsu S, Fisher RS. Parameters for direct cortical electrical stimulation in the human: Histopathologic confirmation. Electroencephalogr Clin Neurophysiol 1990; 75(5): 371–377.

    PubMed  CAS  Google Scholar 

  86. McCreery DB, Agnew WF, Yuen TG, Bullara L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 1990; 37(10): 996–1001.

    PubMed  CAS  Google Scholar 

  87. Sartorius CJ, Wright G. Intraoperative brain mapping in a community setting—technical considerations. Surg Neurol 1997; 47(4): 380–388.

    PubMed  CAS  Google Scholar 

  88. Sartorius CJ, Berger MS. Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer's lactate to the cortex. Technical note. J Neurosurg 1998; 88(2): 349–351.

    Article  PubMed  CAS  Google Scholar 

  89. Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WR, Bare M, Cysyk B, Krauss G, Gordon B. Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 1999; 53(9): 2073–2081.

    PubMed  CAS  Google Scholar 

  90. Journee HL (2003) Electrical safety in intraoperative monitoring. In: Proceedings of the Symposium on Intraoperative Neurophysiology, Ljubjana, 17–18 Oct 2003 [Ljubjana Institute of Clinical Neurophysiology web site], pp. 65–68. Available at: www.kclj.si/ikn/Dejavnosti/FAGA/2003/INVI2003.HTM. Accessed 20 Nov 2003.

  91. Rodi Z, Straus I, Denic K, Deletis V, Vodusek DB. Transient paraplegia revealed by intraoperative neurophysiological monitoring: Was it caused by the epidural anesthetic or an epidural hematoma? Anesth Analg 2003; 96(6): 1785–1788.

    PubMed  Google Scholar 

  92. Kreppel D, Antoniadis G, Seeling W. Spinal hematoma: A literature survey with meta-analysis of 613 patients. Neurosurg Rev 2003; 26(1): 1–49.

    PubMed  CAS  Google Scholar 

  93. de Haan P, Kalkman CJ, Ubags LH, Jacobs MJ, Drummond JC. A comparison of the sensitivity of epidural and myogenic transcranial motor-evoked responses in the detection of acute spinal cord ischemia in the rabbit. Anesth Analg 1996; 83(5): 1022–1027.

    PubMed  Google Scholar 

  94. Ulkatan S, Neuwirth M, Bitan F, Minardi C, Kokoszka A, Deletis V. Monitoring of scoliosis surgery with epidurally recorded motor evoked potentials (D wave) revealed false results. Clin Neurophysiol 2005: In press.

  95. Zhou HH, Turndorf H. Hyper- and hypoventilation affects spinal motor neuron excitability during isoflurane anesthesia. Anesth Analg 1998; 87(2): 407–410.

    PubMed  CAS  Google Scholar 

  96. Dimitrijevic MR, Persy I, Forstner C, Kern H, Dimitrijevic MM. Motor control in the human spinal cord. Artif Organs 2005; 29(3): 216–219.

    PubMed  Google Scholar 

  97. Nicolas G, Marchand-Pauvert V, Burke D, Pierrot-Deseilligny E. Corticospinal excitation of presumed cervical propriospinal neurones and its reversal to inhibition in humans. J Physiol 2001; 533(Part 3): 903–919.

    PubMed  CAS  Google Scholar 

  98. Scheufler KM, Thees C, Nadstawek J, Zentner J. S(+)-ketamine attenuates myogenic motor-evoked potentials at or distal to the spinal alpha-motoneuron. Anesth Analg 2003; 96(1): 238–244.

    PubMed  CAS  Google Scholar 

  99. Leis AA, Zhou HH, Mehta M, Harkey HL 3rd, Paske WC. Behavior of the H-reflex in humans following mechanical perturbation or injury to rostral spinal cord. Muscle Nerve 1996; 19(11): 1373–1382.

    PubMed  CAS  Google Scholar 

  100. Leppanen RE. From the Electrodiagnostics Lab Where transcranial stimulation, H-reflexes and F-responses monitor cord function intraoperatively. Spine J 2004; 4: 601–603.

    PubMed  Google Scholar 

  101. Kombos T, Suess O, Pietila T, Brock M. Subdural air limits the elicitation of compound muscle action potentials by high-frequency transcranial electrical stimulation. Br J Neurosurg 2000; 14(3): 240–243.

    PubMed  CAS  Google Scholar 

  102. Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: The phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol 2005; 17(1): 13–19.

    PubMed  Google Scholar 

  103. Lang EW, Beutler AS, Chesnut RM, Patel PM, Kennelly NA, Kalkman CJ, Drummond JC, Garfin SR. Myogenic motor-evoked potential monitoring using partial neuromuscular blockade in surgery of the spine. Spine 1996; 21(14): 1676–1686.

    PubMed  CAS  Google Scholar 

  104. Binder DK, Lyon R, Manley GT. Transcranial motor evoked potential recording in a case of Kernohan's notch syndrome: Case report. Neurosurgery 2004; 54(4): 999–1002.

    PubMed  Google Scholar 

  105. Zhou HH, Kelly PJ. Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery 2001; 48(5): 1075–1080.

    PubMed  CAS  Google Scholar 

  106. MacDonald DB, Dong CC. Spinal cord monitoring of descending aortic procedures. In: Nuwer MR, ed. Monitoring neural function during surgery, handbook of clinical neurophysiology. 2006: In press.

  107. Dong CC, MacDonald DB, Janusz MT. Intraoperative spinal cord monitoring during descending thoracic and thoracoabdominal aneurysm surgery. Ann Thorac Surg 2002; 74(5): S1873–S1876.

    PubMed  Google Scholar 

  108. Jacobs MJ, Meylaerts SA, de Haan P, de Mol BA, Kalkman CJ. Strategies to prevent neurologic deficit based on motor-evoked potentials in type I and II thoracoabdominal aortic aneurysm repair. J Vasc Surg 1999; 29(1): 48–57.

    PubMed  CAS  Google Scholar 

  109. Jacobs MJ, Mess WH. The role of evoked potential monitoring in operative management of type I and type II thoracoabdominal aortic aneurysms. Semin Thorac Cardiovasc Surg 2003; 15: 353–364.

    PubMed  Google Scholar 

  110. Meylaerts SA, Jacobs MJ, van Iterson V, De Haan P, Kalkman CJ. Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 1999; 230(6): 742–749.

    PubMed  CAS  Google Scholar 

  111. Kakinohana M, Kawabata T, Miyata Y, Sugahara K. Myogenic transcranial motor evoked potentials monitoring cannot always predict neurologic outcome after spinal cord ischemia in rats. J Thorac Cardiovasc Surg 2005; 129: 46–52.

    PubMed  Google Scholar 

  112. Jallo GI, Kothbauer KF, Epstein FJ. Contact laser microsurgery. Child's Nerv Syst 2002; 18(6–7): 333–336.

    Google Scholar 

  113. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: Results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 1995; 96(1): 6–11.

    PubMed  CAS  Google Scholar 

  114. Suzuki K, Kodama N, Sasaki T, Matsumoto M, Konno Y, Sakuma J, Oinuma M, Murakawa M. Intraoperative monitoring of blood flow insufficiency in the anterior choroidal artery during aneurysm surgery. J Neurosurg 2003; 98(3): 507–514.

    PubMed  Google Scholar 

  115. Sakuma J, Suzuki K, Sasaki T, Matsumoto M, Oinuma M, Kawakami M, Itakura T, Kodama N. Monitoring and preventing blood flow insufficiency due to clip rotation after the treatment of internal carotid artery aneurysms. J Neurosurg 2004; 100(5): 960–962.

    PubMed  Google Scholar 

  116. Quinones-Hinojosa A, Alam M, Lyon R, Yingling CD, Lawton MT. Transcranial motor evoked potentials during basilar artery aneurysm surgery: Technique application for 30 consecutive patients. Neurosurgery 2004; 54(4): 916–924.

    PubMed  Google Scholar 

  117. Horiuchi K, Suzuki K, Sasaki T, Matsumoto M, Sakuma J, Konno Y, Oinuma M, Itakura T, Kodama N. Intraoperative monitoring of blood flow insufficiency during surgery of middle cerebral artery aneurysms. J Neurosurg 2005; 103(2): 275–283.

    PubMed  Google Scholar 

  118. Szelényi A, Bueno de Camargo A, Flamm E, Deletis V. Neurophysiological criteria for intraoperative prediction of pure motor hemiplegia during aneurysm surgery. Case report. J Neurosurg 2003; 99(3): 575–578.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. MacDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, D.B. Intraoperative Motor Evoked Potential Monitoring: Overview and Update. J Clin Monit Comput 20, 347–377 (2006). https://doi.org/10.1007/s10877-006-9033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-006-9033-0

Key Words

Navigation