Skip to main content
Log in

Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the Central Highlands of Madagascar

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Orchids, particularly terrestrial taxa, rely mostly on basidiomycete fungi in the Cantharellales and Sebacinales that trigger the process of seed germination and/or initiate the full development of the seedling. During the course of development, orchids may associate with the same fungus, or they may enlist other types of fungi for their developmental needs leading to resilience in a natural setting. This study examined in vitro seed germination and seedling developmental behavior of Cynorkis purpurea, a terrestrial orchid from the Central Highlands of Madagascar. This species is mostly restricted to gallery forests in the Itremo Massif, in moist substrate between rocks bordering streams. The main objective was to understand the influence of diverse mycorrhizal fungi on seed germination and further development of C. purpurea. The study aims to compare symbiotic versus asymbiotic germination and seedling development with seeds and fungi collected from a 13-km2 area in the Itremo region. Seeds collected from the wild were sown with diverse orchid mycorrhizal fungi (OMF) spanning 12 operational taxonomic units (OTUs) in three genera (Tulasnella, Ceratobasidium, and Sebacina) acquired from different habitats. Treatments were assessed in terms of the percentage of germinated seeds and fully developed seedlings against those in asymbiotic control media treatments. Overall, OMF significantly improved seedling development within the 12-week experiment period. Sebacina as a genus was the most effective at promoting seedling development of C. purpurea, as well as having the ability to enter into successful symbiotic relationships with orchids of different life forms; this new knowledge may be especially useful for orchid conservation practiced in tropical areas like Madagascar. A Sebacina isolate from an epiphytic seedling of Polystachya concreta was the most effective at inducing rapid seedling development and was among the five that outperformed fungi isolated from roots of C. purpurea. C. purpurea was found to be a mycorrhizal generalist, despite its specific habitat preference, highlighting the complex interaction between the plant, fungi, and the environment. The potential impact on conservation strategies of understanding the requirements for orchid seed germination and development by identifying and using OMF from diverse sources is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal S, Zettler LW (2010) Reintroduction of an endangered terrestrial orchid, Dactylorhiza hatagirea (D. Don) Soo, assisted by symbiotic seed germination: first report from the Indian subcontinent. Nat Sci 8:139–145

    Google Scholar 

  • Alexander C, Alexander IJ, Hadley G (1984) Phosphate uptake by Goodyera repens in relation to mycorrhizal infection. New Phytol 97:401–411

    Article  CAS  Google Scholar 

  • Anderson AB (1991) Symbiotic and asymbiotic germination and growth of Spiranthes magnicamporum (Orchidaceae). Lindleyana 6:183–186

    Google Scholar 

  • Arditti J (1992) Fundamentals of orchid biology. Wiley, New York

    Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B Biol Sci 271:1799–1806

    Article  CAS  Google Scholar 

  • Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61

    Article  PubMed  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Leake JR, Read DJ (2007) Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cribb P, Hermans J (2007) The conservation of Madagascar’s orchids. A model for an integrated conservation project. Lankesteriana 7:255–261

    Google Scholar 

  • Cribb P, Hermans J (2009) Field guide to the orchids of Madagascar. Royal Botanic Gardens, Kew, Richmond

    Google Scholar 

  • Currah RS, Zelmer CD, Hambleton S, Richardson KA (1997) Fungi from orchid mycorrhizas. In: Arditti J, Pridgeon AM (eds) Orchid biology: reviews and perspectives, VII. Springer, Netherlands, pp 117–170

    Chapter  Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  • Dearnaley JDW, Martos F, Selosse M-A (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations, vol 9, 2nd edn. Springer, Berlin Heidelberg, pp 207–230

    Chapter  Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel K-H (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A 103:18450–18457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowling N, Jusaitis M (2012) Asymbiotic in vitro germination and seed quality assessment of Australian terrestrial orchids. Aust J Bot 60:592–601

    Article  Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Dioscorides Press, Portland

    Google Scholar 

  • Hadley G (1970) Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytol 69:1015–1023

    Article  Google Scholar 

  • Hajong S, Kumaria S, Tandon P (2013) Compatible fungi, suitable medium, and appropriate developmental stage essential for stable association of Dendrobium chrysanthum. J Basic Microbiol 53:1025–1033

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Fukukawa S, Kunishi A, Suga H, Richard F, Sauve M, Selosse M-A (2012) Mycoheterotrophic germination of Pyrola asarifolia dust seeds reveals convergences with germination in orchids. New Phytol 195:620–630

    Article  PubMed  Google Scholar 

  • Hirano T, Godo T, Miyoshi K, Ishikawa K, Ishikawa M, Mii M (2009) Cryopreservation and low-temperature storage of seeds of Phaius tankervilleae. Plant Biotechnol Rep 3:103–109

    Article  Google Scholar 

  • Hosomi ST, Custodio CC, Seaton PT, Marks TR, Machado-Neto NB (2012) Improved assessment of viability and germination of Cattleya (Orchidaceae) seeds following storage. In Vitro Cell Dev Biol Plant 48:127–136

    Article  Google Scholar 

  • Huynh TT, McLean CB, Coates F, Lawrie AC (2004) Effect of developmental stage and peloton morphology on success in isolation of mycorrhizal fungi in Caladenia formosa (Orchidaceae). Aust J Bot 52:231–241

    Article  Google Scholar 

  • Johnson NC, Graham J-H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Johnson TR, Stewart SL, Dutra D, Kane ME, Richardson L (2007) Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae)—preliminary evidence for the symbiotic culture advantage. Plant Cell Tissue Organ Cult 90:313–323

    Article  Google Scholar 

  • Lee YI (2011) In vitro culture and germination of terrestrial Asian orchid seeds. Methods Mol Biol 710:53–62

    Article  CAS  PubMed  Google Scholar 

  • Mahendran G, Muniappan V, Ashwini M, Muthukumar T, Narmatha Bai V (2013) Asymbiotic seed germination of Cymbidium bicolor Lindl. (Orchidaceae) and the influence of mycorrhzal fungus on seedling development. Acta Physiol Plant 35:829–840

    Article  Google Scholar 

  • McNair JN, Sunkara A, Frobish D (2012) How to analyse seed germination data using statistical time-to-event analysis: non-parametric and semi-parametric methods. Seed Sci Res 22:77–95

    Article  Google Scholar 

  • Merritt DJ, Hay FR, Swarts ND, Sommerville KD, Dixon KW (2014) Ex situ conservation and cryopreservation of orchid germplasm. Int J Plant Sci 175:46–58

    Article  CAS  Google Scholar 

  • Mitchell RB (1989) Growing hardy orchids from seeds at Kew. The Plantsman 11:152–169

    Google Scholar 

  • Nikabadi S, Bunn E, Stevens J, Newman B, Turner SR, Dixon KW (2014) Germination responses of four native terrestrial orchids from south-west Western Australia to temperature and light treatments. Plant Cell Tissue Organ Cult 118:559–569

    Article  Google Scholar 

  • Oberwinkler F, Riess K, Bauer R, Selosse M-A, Weiss M, Garnica S, Zuccaro A (2013) Enigmatic sebacinales. Mycol Prog 12:1–27

    Article  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Otero JT, Flanagan NS, Herre EA, Ackerman JD, Bayman P (2007) Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am J Bot 94:1944–1950

    Article  PubMed  Google Scholar 

  • Pandey M, Sharma J, Taylor DL, Yadom VL (2013) A narrowly endemic photosynthetic orchid is non-specific in its mycorrhizal associations. Mol Ecol 22:2341–2354

    Article  PubMed  Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869

    Article  Google Scholar 

  • Quay L, McComb JA, Dixon KW (1995) Methods for ex vitro germination of Australian terrestrial orchids. HortSci 30:1445–1446

    Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2014) Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae. Bot J Linn Soc 175:313–327

    Article  Google Scholar 

  • Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. Am J Bot 80:1374–1378

    Article  Google Scholar 

  • Rasmussen HN, Dixon KW, Jersáková J, Těšitelová T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116:391–402

    Article  PubMed  Google Scholar 

  • Reed BM, Sarasan V, Kane M, Bunn E, Pence VC (2011) Biodiversity conservation and conservation biotechnology tools. In Vitro Cell Dev Biol Plant 47:1–4

    Article  CAS  Google Scholar 

  • Roy M, Yagame T, Yamato M, Iwase K, Heinz C, Faccio A, Bonfante P, Selosse M-A (2009) Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Ann Bot 104:595–610

    Article  PubMed  PubMed Central  Google Scholar 

  • Selosse M-A, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426

    Article  CAS  PubMed  Google Scholar 

  • Shefferson RP, Weiss M, Kull T, Taylor DL (2005) High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626

    Article  CAS  PubMed  Google Scholar 

  • Shefferson RP, Taylor DL, Weiss M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa T, Kawahara T, Miyoshi K, Lee YI (2007) The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61:1380–1390

    Article  PubMed  Google Scholar 

  • Shimura H, Koda Y (2005) Enhanced symbiotic seed germination of Cypripedium macranthos var. rebunense following inoculation after cold treatment. Physiol Plant 123:281–287

    Article  CAS  Google Scholar 

  • Stewart SL, Kane ME (2007) Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. In Vitro Cell Dev Biol Plant 43:178–186

    Article  Google Scholar 

  • Stokstad E (2015) Orchids’ dazzling diversity explained. Science 349:914

    Article  CAS  PubMed  Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Swarts ND, Sinclair EA, Francis A, Dixon KW (2010) Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol Ecol 19:3226–3242

    Article  CAS  PubMed  Google Scholar 

  • Tyson P (2000) The eighth continent: life, death and discovery in the lost world of Madagascar. William Morrow (Harper Collins) Publishers, New York

    Google Scholar 

  • Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Warcup JH (1973) Symbiotic germination of some Australian terrestrial orchids. New Phytol 72:387–392

    Article  Google Scholar 

  • Weiss M, Selosse M-A, Rexer K-H, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • Weiss M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS ONE 6, e16793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells K (1994) Jelly fungi, then and now! Mycologia 86:18–48

    Article  Google Scholar 

  • Whitman M, Medler M, Randriamanindry JJ, Rabakonandrianina E (2011) Conservation of Madagascar’s granite outcrop orchids: the influence of fire and moisture. Lankesteriana 11:55–67

    Article  Google Scholar 

  • Yamazaki J, Miyoshi K (2006) In vitro asymbiotic germination of immature seed and formation of protocorm by Cephalanthera falcata (Orchidaceae). Ann Bot 98:1197–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Sci 156:145–150

    Article  CAS  PubMed  Google Scholar 

  • Yokoya K, Zettler LW, Kendon JP, Bidartondo MI, Stice AL, Skarha S, Corey LL, Knight AC, Sarasan V (2015) Preliminary findings on identification of mycorrhizal fungi from diverse orchids in the Central Highlands of Madagascar. Mycorrhiza 25:611–625

    Article  PubMed  Google Scholar 

  • Zettler LW (1997) Terrestrial orchid conservation by symbiotic seed germination: techniques and perspectives. Selbyana 18:188–194

    Google Scholar 

  • Zettler LW, Piskin KA (2011) Mycorrhizal fungi from protocorms, seedlings and mature plants of the Eastern Prairie Fringed Orchid, Platanthera leucophaea (Nutt.) Lindley: a comprehensive list to augment conservation. Am Midl Nat 166:29–39

    Article  Google Scholar 

  • Zettler LW, Poulter SB, McDonald KI, Stewart SL (2007) Conservation-driven propagation of an epiphytic orchid (Epidendrum nocturnum) with a mycorrhizal fungus. HortScience 42:135–139

    Google Scholar 

  • Zi XM, Sheng CL, Goodale UM, Shao SC, Gao JY (2014) In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24:487–499

    Article  CAS  PubMed  Google Scholar 

  • Zotz G (2013) The systematic distribution of vascular epiphytes – a critical update. Bot J Linn Soc 171:453–481

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Threatened Plants Appeal and Sainsbury Orchid Project Fund, and the Margaret A. Cargill Foundation for funding the Illinois College team. We acknowledge the support received from Jonathan Kendon, Landy Rajaovelona, and Gaetan Ratovonirina (Kew Madagascar Conservation Centre), Andrew L. Stice (Illinois College), and Solo Rapanarivo and Jacky Andriantiana (Parc Botanique et Zoologique de Tsimbazaza, Madgascar). We also thank Tom Gregory (University College, London) for his advice on statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sarasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafter, M., Yokoya, K., Schofield, E.J. et al. Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the Central Highlands of Madagascar. Mycorrhiza 26, 541–552 (2016). https://doi.org/10.1007/s00572-016-0691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0691-6

Keywords

Navigation