Skip to main content
Log in

Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aroca R, Alguacil MM, Vernieri P, Ruiz-Lozano JM (2008a) Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (Sitiens). Microb Ecol 56:704–719

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008b) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G, Ruiz-Lozano JM (2009) Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium. Mol Plant-Microbe Interact 22:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, Garcia-Mina JM, Pozo MJ, Lopez-Raez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Asensi-Fabado MA, Cela J, Müller M, Arrom L, Chang CM, Munné-Bosch S (2012) Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress. J Plant Physiol 169:360–368

    Article  CAS  PubMed  Google Scholar 

  • Auge RM, Stodola AJW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97

    Article  CAS  Google Scholar 

  • Bacaicoa E, Mora V, Zamarreño AM, Fuentes M, Casanova E, García-Mina JM (2011) Auxin: a major player in the shoot-to-root regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants. Plant Physiol Biochem 49:545–556

    Article  CAS  PubMed  Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017

    Article  PubMed Central  PubMed  Google Scholar 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359

    Article  CAS  PubMed  Google Scholar 

  • Benabdellah K, Ruiz-Lozano JM, Aroca R (2009) Hydrogen peroxide effects on root hydraulic properties and plasma membrane aquaporin regulation in Phaseolus vulgaris. Plant Mol Biol 70:647–661

    Article  CAS  PubMed  Google Scholar 

  • Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C (2008) Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56:207–218

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM, Williams WL (1976) New, rapid, sensitive method for protein determination. Fed Proc 35:274–274

    Google Scholar 

  • De Ollas C, Hernando B, Arbona V, Gomez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306

    Article  PubMed  Google Scholar 

  • Denison RF, Kiers ET (2011) Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr Biol 21:R775–R785

    Article  CAS  PubMed  Google Scholar 

  • di Pietro M, Vialaret J, Li GW, Hem S, Prado K, Rossignol M, Maurel C, Santoni V (2013) Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots. Mol Cell Proteomics 12:3886–3897

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Mesbahi MN, Azacón R, Ruiz-Lozano JM, Aroca R (2012) Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza 22:555–564

    Article  CAS  PubMed  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water-uptake in mycorrhizal plants. Can J Bot 69:87–94

    Article  Google Scholar 

  • Feng SG, Yue RQ, Tao S, Yang YJ, Zhang L, Xu MF, Wang HZ, Shen CJ (2015) Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. J Integr Plant Biol. doi:10.1111/jipb.12327

    Google Scholar 

  • Fiscus EL (1986) Diurnal changes in volume and solute transport coefficcients of Phaseolus roots. Plant Physiol 80:752–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wastemack C, Solano R (2009) (+)-7-Iso-Jasmonyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Gallardo M, Eastham J, Gregory PJ, Turner NC (1996) A comparison of plant hydraulic conductances in wheat and lupins. J Exp Bot 47:233–239

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrera-Medina MJ, Tamayo MI, Vierheilig H, Ocampo JA, García-Garrido JM (2008) The jasmonic acid signalling pathway restricts the development of the arbuscular mycorrhizal association in tomato. J Plant Growth Regul 27:221–230

    Article  CAS  Google Scholar 

  • Hewitt EJ (1952) Sand and water culture methods used in the study of plant nutrition. Technical Communication 22. Commonwealth Agricultural Bureaux, Farnham Royal

    Google Scholar 

  • Horie T, Kaneko T, Sugimito G, Sasano S, Panda SK, Shibasaka M, Katsuhara M (2011) Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant Cell Physiol 52:663–675

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B (2005) Suppression of allene oxidase cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 139:1401–1410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamaluddin M, Zwiazek JJ (2002) Ethylene enhances water transport in hypoxic aspen. Plant Physiol 128:962–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CAMV-35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Chung GC, Jang JY, Ahn SJ, Zwiazek JJ (2012) Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis. Plant Physiol 159:479–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leon-Morcillo RJ, Martin-Rodriguez AJ, Vierheilig H, Ocampo JA, Garcia-Garrido JM (2012) Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling. J Exp Bot 63:3545–3558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD (2013) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630

    Article  CAS  PubMed  Google Scholar 

  • Li YS, Mao XT, Tian QY, Li LH, Zhang WH (2009) Phosphorus deficiency-induced reduction in root hydraulic conductivity in Medicago falcata is associated with ethylene production. Environ Exp Bot 67:172–177

    Article  CAS  Google Scholar 

  • Liu ZL, Li YJ, Hou HY, Zhu XC, Rai V, He XY, Tian CJ (2013) Differences in arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side. Plant Physiol Biochem 71:87–95

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601

    Article  PubMed Central  PubMed  Google Scholar 

  • Ludwig-Muller J, Bennett RN, Garcia-Garrido JM, Piche Y, Vierheilig H (2002) Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application can not be attributed to increased glucosinolate levels. J Plant Physiol 159:517–523

    Article  CAS  Google Scholar 

  • Mahdieh M, Mostajeran A (2009) Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum. J Plant Physiol 166:1993–2003

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Azcon R, Ruiz-Lozano (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    Article  CAS  Google Scholar 

  • Meixner C, Ludwig-Muller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Reichelt M, Nakamura Y (2013) Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin. Plant Biol 16:982–987

    Article  Google Scholar 

  • Peret B, Li G, Zhao J, Band LR, Voss U, Postaire O, Doan-Trung L, Da Ines O, Casimiro I, Lucas M, Wells DM, Lazzerini L, Nacry P, King JR, Jensen OE, Schaeffner AR, Maurel C, Bennett MJ (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nature Cell Biol 14:991–1006

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure of clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:159–161

    Article  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Pospíšolová J (2003) Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biol Plant 46:491–506

    Article  Google Scholar 

  • Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schaeffner AR, Maurel C (2010) A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol 152:1418–1430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prado K, Boursiac Y, Tournaire-Roux C, Monneuse JM, Postaire O, Da Ines O, Schaffner AR, Hem S, Santoni V, Maurel C (2013) Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. Plant Cell 25:1029–1039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Proietti S, Bertini L, Timperio AM, Zolla L, Caporale C, Caruso C (2013) Crosstalk between salicylic acid and jasmonate in Arabidopsis investigated by an integrated proteomic and transcriptomic approach. Mol Biosyst 9:1169–1187

    Article  CAS  PubMed  Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2012) Effects of temperature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seedlings. Environ Exp Bot 75:107–113

    Article  CAS  Google Scholar 

  • Riedel T, Groten K, Baldwin IT (2008) Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not. Plant Cell Environ 31:1203–1213

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Alguacil MM, Bárzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70:565–579

    Article  CAS  PubMed  Google Scholar 

  • Ruth B, Khalvati M, Schmidhalter U (2011) Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil 342:459–468

    Article  CAS  Google Scholar 

  • Sanchez-Romera B, Ruiz-Lozano JM, Li G, Luu DT, Martinez-Ballesta MD, Carvajal M, Zamarreno AM, Garcia-Mina JM, Maurel C, Aroca R (2014) Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ 37:995–1008

    Article  CAS  PubMed  Google Scholar 

  • Siemens JA, Zwiazek JJ (2004) Changes in root water flow properties of solution culture-grown trembling aspen (Populus tremuloides) seedlings under different intensities of water-deficit stress. Physiol Plant 121:44–49

    Article  CAS  PubMed  Google Scholar 

  • Silva FCE, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004) Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiol 24:1165–1172

    Article  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Stitz M, Hartl M, Baldwin IT, Gaquerel E (2014) Jasmonyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata). Plant Cell 26:3964–3983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stumpe M, Carsjens JG, Stenzel I, Göbel C, Lang I, Pawlowski K, Hause B, Feussner I (2005) Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochemistry 66:781–791

    Article  CAS  PubMed  Google Scholar 

  • Tamogami S, Rakwal R, Agrawal GK (2008) Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochem Biophys Res Commun 376:723–727

    Article  CAS  PubMed  Google Scholar 

  • Zelazny E, Miecielica U, Borst JW, Hemminga MA, Chaumont F (2009) An N-terminal diacidic motif is required for the trafficking of maize aquaporins ZmPIP2;4 and ZmPIP2;5 to the plasma membrane. Plant J 57:346–355

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Huang Z (2013) Effects of endogenous abscisic acid, jasmonic acid, polyamines, and polyamine oxidase activity in tomato seedlings under drought stress. Sci Hortic 159:172–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministerio de Economía y Competitividad (Spain) by a grant AGL2011-25403 to R. Aroca, JM Ruiz-Lozano and B. Sánchez-Romera. B. Sánchez-Romera was supported by a fellowship from the Formación de Personal Investigador program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Aroca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effect of water regime and MeJA treatment on the percentage of root length colonized in bean plants by Rhizophagus irregularis. Plants were treated (light grey columns) or not (dark grey columns) with 200 μM MeJA, and cultivated under well-watered or drought conditions for 7 days. Columns represent means ± SE (n = 4). None of the treatments had significant differences after ANOVA and LSD tests. (PPTX 46 kb)

Fig. S2

Dry weights of shoots and roots of P. vulgaris plants, uninoculated (dark grey columns) or inoculated with Rhizophagus irregularis (light grey columns). Plants were treated or not (NT) with 200 μM MeJA, and cultivated under well-watered or drought conditions for 7 days. Columns represent mean ± SE (n = 4). None of the treatments had significant differences after ANOVA and LSD tests. (PPTX 64 kb)

Fig. S3

Fresh weights of shoots and roots of P. vulgaris plants, uninoculated (dark grey columns) or inoculated with Rhizophagus irregularis (light grey columns). Plants were treated or not (NT) with 200 μM MeJA, and cultivated under well-watered or drought conditions for 7 days. Columns represent mean ± SE (n = 4). None of the treatments had significant differences after ANOVA and LSD tests. (PPTX 63 kb)

Fig. S4

Relative expression of (A) PvAOC, (B) PvLEA, (C) PvGH3 and (D) PvPAL genes determined by q-RT-PCR in roots of P. vulgaris, uninoculated (dark grey columns) or inoculated with Rhizophagus irregularis (light grey columns). Plants were treated or not (NT) with 200 μM MeJA, and cultivated under well-watered or drought conditions for 7 days. Columns represent means (n = 3) ± SE. Different letters indicate significant differences (p < 0.05) after ANOVA and LSD tests. Linear models established between gene expression of PvAOC and JA content (E), gene expression of PvLEA and ABA content (F), gene expression of PvGH3 and IAA content (G) and gene expression of PvPAL and SA content (H). (PPTX 109 kb)

Table S1

(PPTX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Romera, B., Ruiz-Lozano, J.M., Zamarreño, Á.M. et al. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza 26, 111–122 (2016). https://doi.org/10.1007/s00572-015-0650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0650-7

Keywords

Navigation