Skip to main content
Log in

Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Autoregulatory mechanisms have been reported in the rhizobial and the mycorrhizal symbiosis. Autoregulation means that already existing nodules or an existing root colonization by an arbuscular mycorrhizal fungus systemically suppress subsequent nodule formation/root colonization in other parts of the root system. Mutants of some legumes lost their ability to autoregulate the nodule number and thus display a supernodulating phenotype. On studying the effect of pre-inoculation of one side of a split-root system with an arbuscular mycorrhizal fungus on subsequent mycorrhization in the second side of the split-root system of a wild-type soybean (Glycine max L.) cv. Bragg and its supernodulating mutant nts1007, we observed a clear suppressional effect in the wild-type, whereas further root colonization in the split-root system of the mutant nts1007 was not suppressed. These data strongly indicate that the mechanisms involved in supernodulation also affect mycorrhization and support the hypothesis that the autoregulation in the rhizobial and the mycorrhizal symbiosis is controlled in a similar manner. The accumulation patterns of the plant hormones IAA, ABA and Jasmonic acid (JA) in non-inoculated control plants and split-root systems of inoculated plants with one mycorrhizal side of the split-root system and one non-mycorrhizal side, indicate an involvement of IAA in the autoregulation of mycorrhization. Mycorrhizal colonization of soybeans also resulted in a strong induction of ABA and JA levels, but on the basis of our data the role of these two phytohormones in mycorrhizal autoregulation is questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AMF:

Arbuscular mycorrhizal fungus

IAA:

Indole-3-acetic

JA:

Jasmonic acid

min:

minute

References

  • Boller T (2005) Peptide signalling in plant development and self/non-self perception. Curr Opin Cell Biol 17:116–122

    Article  PubMed  CAS  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM and Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619

    Article  PubMed  CAS  Google Scholar 

  • Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild typ. Planta 211:98–104

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382

    Article  PubMed  Google Scholar 

  • Carrol BJ, McNeil DL, Gresshoff PM (1985) A supernodulation and nitrate tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40

    Google Scholar 

  • Catford JG, Staehelin C, Lerat S, Piché Y, Vierheilig H (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J Exp Bot 54:1481–1487

    Article  PubMed  CAS  Google Scholar 

  • Cohen JD (1984) Convenient apparatus for the generation of small amounts of diazomethane. J Chromatogr 303:193–196

    Article  CAS  Google Scholar 

  • Cohen JD, Baldi BG, Slovin JP (1986) 13C6-[benzene ring]-indole-3-acetic acid. Plant Physiol 80:14–19

    PubMed  CAS  Google Scholar 

  • Cohen JD, Bausher MG, Bialek K, Buta JG, Gocol GFW, Janzen LM, Pharis RP, Reed AN, Slovin JP (1987) Comparison of a commercial ELISA assay for indole-3-acetic acid at several stages of purification and analysis by gas chromatography-selected ion monitoring mass spectrometry using a 13C6-labeled internal standard. Plant Physiol 84:982–986

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89:4938–4941

    Article  PubMed  CAS  Google Scholar 

  • Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsch HJ, Bothe H (1992) Influence of vesicular arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J Plant Physiol 141:33–39

    Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1:316–323

    Article  PubMed  CAS  Google Scholar 

  • Elad Y (1995) Physiological factors involved in susceptibility of plants to pathogens and possibilities for disease control—the Botrytis cinerea example. In: Lyr H (ed) Modern fungicides and antifungal compounds. British Crop Protection Council Intercept, UK, pp 217–233

    Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Reg 22:47–72

    Article  CAS  Google Scholar 

  • Gryndler M, Hrselova H, Chvatalova I, Jansa J (1998) The effect of selected plant hormones on in vitro proliferation of hyphae of Glomus fistulosum. Biol Plantarum 41:255–263

    Article  CAS  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Kaldorf M, Ludwig-Müller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67

    Article  CAS  Google Scholar 

  • Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, De Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, McK Bird D (2003) Lotus japonicus: a new model to study root-parasitic nematodes. Plant Cell Physiol 44:1176–1184

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38:203–214

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Müller J (2000) Hormonal balance in plants during colonization by mycorrhizal fungi. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Netherlands, pp 263–285

    Google Scholar 

  • Ludwig-Müller J, Kaldorf M, Sutter EG, Epstein E (1997) Indole-3-butryric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Sci 125:153–162

    Article  Google Scholar 

  • Ludwig-Müller J, Bennett RN, Garcia-Garrido JM, Piché Y, Vierheilig H (2002) Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application can not be attributed to increased glucosinolate levels. J Plant Physiol 159:517–523

    Article  Google Scholar 

  • Michniewicz M, Rozej B (1987) Is gibberelin a limiting factor for the growth and development of Fusarium culmorum? Acta Physiol Plant 10:227–236

    Google Scholar 

  • Miersch O (1991) Synthesis of (±)-(10-2H,11-2H2,12-2H3) jasmonic acid. Z Naturforschung 46b:1724–1729

    Google Scholar 

  • Morandi D, Prado-Vivant MSE, Duc G (2000) Influence of genes determining supernodulation on root colonization by the mycorrhizal fungus Glomus mosseae in Pisum sativum and Medicago truncatula mutants. Mycorrhiza 10:37–42

    Article  CAS  Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145

    Article  Google Scholar 

  • Nishimura R, Hayashi M, Wu G-J, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    Article  PubMed  CAS  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  PubMed  CAS  Google Scholar 

  • Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC (2002) CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14:969–977

    Article  PubMed  CAS  Google Scholar 

  • Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  PubMed  CAS  Google Scholar 

  • Shaul-Keinan O, Gadkar V, Ginzberg I, Grünzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Atzmon N, Ben-Tal Y, Kapulnik Y (2002) Hormone concentrations in tobacco roots change during arbuscular colonization with Glomus intraradices. New Phytol 154:501–507

    Article  CAS  Google Scholar 

  • Shrihari PC, Sakamoto K, Inubushi K, Akao S (2000) Interaction between supernodulating or non-nodulating mutants of soybean and two arbuscular mycorrhizal fungi. Mycorrhiza 10:101–106

    Article  Google Scholar 

  • Smith S, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Solaiman MZ, Senoo K, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H (2000) Characterisation of mycorrhizas formed by Glomus sp. on roots of hypernodulating mutants of Lotus japonicus. J Plant Res 113:443–448

    Article  Google Scholar 

  • Torelli A, Trotta A, Acerbi l, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35

    Article  CAS  Google Scholar 

  • Vierheilig H (2004a) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot 82:1166–1176

    Article  CAS  Google Scholar 

  • Vierheilig H (2004b) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339–341

    Article  CAS  Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: Facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in Cell Functions. Kluwer/Plenum, New York, pp 23–39

    Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  • Vierheilig H, Garcia-Garrido JM, Wyss U, Piché Y (2000a) Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol Biochem 32:589–595

    Article  CAS  Google Scholar 

  • Vierheilig H, Maier W, Wyss U, Samson J, Strack D, Piché Y (2000b) Cyclohexenone derivative- and phosphate-levels in split-root systems and their role in the systemic suppression of mycorrhization in precolonized barley plants. J Plant Physiol 157:593–599

    CAS  Google Scholar 

  • Wopereis J, Pajuelo E, Dazzo FB, Jiang QY, Gresshoff, PM, de Bruijn FJ, Stougaard J, Szczyglowski K (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J 23:97–114

    Article  PubMed  CAS  Google Scholar 

  • Wyss P, Mellor RB, Wiemken A (1990) Mutants of soybean (Glycine max) unable to suppress nodulation in presence of nitrate retain the ability to suppress mycorrhization in presence of phosphate. J Plant Physiol 136:507–509

    CAS  Google Scholar 

  • Xie Z-P, Müller J, Wiemken A, Broughton WJ, Boller T (1998) Nod factors and tri-iodobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lablab purpureus. New Phytol 139:361–366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant of the “Universität für Bodenkultur Wien” Austria to C. Meixner and a grant of the “Hochschuljubiläumsstiftung der Stadt Wien” Austria to H. Vierheilig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Vierheilig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meixner, C., Ludwig-Müller, J., Miersch, O. et al. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007 . Planta 222, 709–715 (2005). https://doi.org/10.1007/s00425-005-0003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0003-4

Keywords

Navigation