Skip to main content
Log in

Simultaneous specific in planta visualization of root-colonizing fungi using fluorescence in situ hybridization (FISH)

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

In planta detection of mutualistic, endophytic, and pathogenic fungi commonly colonizing roots and other plant organs is not a routine task. We aimed to use fluorescence in situ hybridization (FISH) for simultaneous specific detection of different fungi colonizing the same tissue. We have adapted ribosomal RNA (rRNA) FISH for visualization of common mycorrhizal (arbuscular- and ectomycorrhiza) and endophytic fungi within roots of different plant species. Beside general probes, we designed and used specific ones hybridizing to the large subunit of rRNA with fluorescent dyes chosen to avoid or reduce the interference with the autofluorescence of plant tissues. We report here an optimized efficient protocol of rRNA FISH and the use of both epifluorescence and confocal laser scanning microscopy for simultaneous specific differential detection of those fungi colonizing the same root. The method could be applied for the characterization of other plant–fungal interactions, too. In planta FISH with specific probes labeled with appropriate fluorescent dyes could be used not only in basic research but to detect plant colonizing pathogenic fungi in their latent life-period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. doi:10.1890/05-1459

    Article  PubMed  Google Scholar 

  • Baker BJ, Hugenholtz P, Dawson SC, Banfield JF (2003) Extremely acidophilic protists host Rickettsiales-lineage endosymbionts with an intervening sequence in their 16S rRNA genes. Appl Environ Microbiol 69:5512–5518. doi:10.1128/AEM.69.9.5512-5518.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baschien C, Manz W, Neu TR, Marvanová L, Szewcyk U (2008) In situ detection of freshwater fungi in an alpine stream by new taxon-specific fluorescence in situ hybridization probes. Appl Environ Microbiol 74:6427–6436. doi:10.1128/AEM.00815-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bergero R, Harrier LA, Franken P (2003) Reporter genes: applications to the study of arbuscular mycorrhizal (AM) fungi and their symbiotic interactions with plant roots. Plant and Soil 255:143–155. doi:10.1104/pp. 011882

    Article  CAS  Google Scholar 

  • Błaszkowski J, Kovács GM, Gáspár BK, Balázs KT, Buscot F, Ryszka P (2012) The arbuscular mycorrhizal Paraglomus majewskii sp. nov. represents a distinct basal lineage in Glomeromycota. Mycologia 104:148–156. doi:10.3852/10-430

    Article  PubMed  Google Scholar 

  • Czymmek KJ, Bourett TM, Howard RJ (2005) Fluorescent protein probes in fungi. In: Savidge T, Pothoulakis C (eds) Methods in microbiology, vol 34. Microbial Imaging Elsevier, Amsterdam, pp 27–62

    Google Scholar 

  • da Silva GA, Lumini E, Maia LC, Bonfante P, Bianciotto V (2006) Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences. Mycorrhiza 16:183–189. doi:10.1007/s00572-005-0030-9

    Article  CAS  PubMed  Google Scholar 

  • Daims H, Stoecker K, Wagner M (2005) Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn AM, Smith C (eds) Molecular microbial ecology. New York, USA, Taylor and Francis, pp 213–239

    Google Scholar 

  • Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9:205–213. doi:10.1007/s005720050268

    Article  Google Scholar 

  • Diagne N, Escoute J, Lartaud M, Verdeil JL, Franche C, Kane A, Bogusz D, Diouf D, Duponnois R, Svistoonoff S (2011) Uvitex2B: a rapid and efficient stain for detection of arbuscular mycorrhizal fungi within plant roots. Mycorrhiza 21:315–321. doi:10.1007/s00572-010-0357-8

    Article  PubMed  Google Scholar 

  • Dreyer B, Morte A, Pérez-Gilabert M, Honrubia M (2006) Autofluorescence detection of arbuscular mycorrhizal fungal structures in palm roots: an underestimated experimental method. Mycol Res 110:887–897. doi:10.1016/j.mycres.2006.05.011

    Article  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. doi:10.1038/nature10947

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Girlanda M, Perotto S, Luppi AM (2006) Molecular diversity and ecological roles of mycorrhiza-associated sterile fungal endophytes in Mediterranean ecosystems. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin–Heidelberg, pp 207–226. doi:10.1007/3-540-33526-9_12

    Chapter  Google Scholar 

  • Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008) Dark septate endophytes (DSE) of the Phialocephala fortinii s.l. - Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86:1355–1369. doi:10.1139/B08-108

    Article  Google Scholar 

  • Hansen K, Lobuglio KF, Pfister DH (2005) Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred multiple nuclear genes: RPB2, β-tubulin, and LSU rDNA. Mol Phylogenet Evol 36:1–23. doi:10.1016/j.ympev.2005.03.010

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide Web? Nature 394:431. doi:10.1038/28764

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Kirk PM (2009) Fungal ecology catches fire. New Phytol 184:279–282. doi:10.1111/j.1469-8137.2009.03042.x

    Article  PubMed  Google Scholar 

  • Hoch HC, Galvani CD, Szarowski DH, Turner JN (2005) Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97:580–588. doi:10.3852/mycologia.97.3.580

    Article  CAS  PubMed  Google Scholar 

  • Hood ME, Shew HD (1996) Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. Phytopathology 86:704–708. doi:10.1094/Phyto-86-704

    Article  Google Scholar 

  • Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203. doi:10.1038/nature09984

    Article  CAS  PubMed  Google Scholar 

  • Kohout P, Sýkorová Z, Čtvrtlíková M, Rydlová J, Suda J, Vohník M, Sudová R (2012) Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol 80:216–235. doi:10.1111/j.1574-6941.2011.01291.x

    Article  CAS  PubMed  Google Scholar 

  • Knapp DG, Pintye A, Kovács GM (2012) The dark side is not fastidious—dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS ONE 7:e32570. doi:10.1371/journal.pone.0032570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovács GM, Szigetvári C (2002) Mycorrhizae and other root-associated fungal structures of the plants of a sandy grassland on the Great Hungarian Plain. Phyton Ann Rei Bot 42:211–223

    Google Scholar 

  • Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994. doi:10.1128/AEM.67.5.1987-1994.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi:10.1038/nature11237

    Article  CAS  PubMed  Google Scholar 

  • Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155. doi:10.1007/s00572-008-0165-6

    Article  PubMed  Google Scholar 

  • Prieto P, Moore G, Shaw P (2007) Fluorescence in situ hybridization on vibratome sections of plant tissues. Nat Protoc 2:1831–1838. doi:10.1038/nprot.2007.265

    Article  CAS  PubMed  Google Scholar 

  • Qian XM, Kottke I, Oberwinkler F (1998) Activity of different ectomycorrhizal types studied by vital fluorescence. Plant and Soil 199:91–98. doi:10.1023/A:1004226220283

    Article  CAS  Google Scholar 

  • Regvar M, Likar M, Piltaver A, Kugonič N, Smith JE (2010) Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant and Soil 330:345–356. doi:10.1007/s11104-009-0207-7

    Article  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246. doi:10.1073/pnas.1117018109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz BJE, Boyle CJC, Sieber TN (eds) (2006) Microbial root endophytes. Soil biology, vol 9. Springer, Berlin–Heidelberg

    Google Scholar 

  • Séjalon-Delmas N, Magnier A, Douds DD, Bécard G (1998) Cytoplasmic autofluorescence of an arbuscular mycorrhizal fungus Gigaspora gigantea and nondestructive fungal observations in planta. Mycologia 90:921–926

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Cambridge

    Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474. doi:10.1111/j.1469-8137.2010.03262.x

    Article  CAS  PubMed  Google Scholar 

  • Stoyke G, Egger KN, Currah RS (1992) Characterization of sterile endophytic fungi from the mycorrhizae of sub-alpine plants. Can J Bot 70:2009–2016. doi:10.1139/b92-250

    Article  Google Scholar 

  • Tedersoo L, Pärtel K, Jairus T, Gates G, Põldmaa K, Tamm H (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178. doi:10.1111/j.1462-2920.2009.02020.x

    Article  CAS  PubMed  Google Scholar 

  • Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Perason V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hybridization. Mycorrhiza 8:203–206. doi:10.1007/s005720050235

    Article  CAS  Google Scholar 

  • Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404. doi:10.1111/j.1399-3054.2005.00564.x

    CAS  Google Scholar 

  • Wagner M, Haider S (2012) New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotech 23:96–102. doi:10.1016/j.copbio.2011.10.010 pp. 96-102

    Article  CAS  PubMed  Google Scholar 

  • Wagg C, Pautler M, Massicote HB, Peterson RL (2008) The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza 18:103–110. doi:10.1007/s00572-007-0157-y

    Article  PubMed  Google Scholar 

  • Yilmaz LS, Parnerkar S, Noguera DR (2011) mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol 77:1118–1122. doi:10.1128/AEM.01733-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yoram Kapulnik (ARO Volcani Center, Israel) for kindly providing AMF inoculum. Funding was provided by the Hungarian Scientific Research Fund (OTKA, K72776, and NI72776). GMK is supported by the Bolyai János Research Fellowship (Hungarian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor M. Kovács.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 8016 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vági, P., Knapp, D.G., Kósa, A. et al. Simultaneous specific in planta visualization of root-colonizing fungi using fluorescence in situ hybridization (FISH). Mycorrhiza 24, 259–266 (2014). https://doi.org/10.1007/s00572-013-0533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0533-8

Keywords

Navigation