Skip to main content

Advertisement

Log in

Artificial intelligence based optimization for vibration energy harvesting applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper deals with optimization studies based on artificial intelligence methods. These modern optimization methods can be very useful for design improving of an electromagnetic vibration energy harvester. The vibration energy harvester is a complex mechatronic device which harvests electrical energy from ambient mechanical vibrations. The harvester design consists of a precise mechanical resonator, electromagnetic converter and electronics. The optimization study of such complex mechatronic device is complicated however artificial intelligence methods can be used for set up of optimal harvester parameters. Used optimization strategies are applied to optimize the design of the electro-magnetic vibration energy harvester according to multi-objective fitness functions. Optimization results of the harvester are summarized in this paper. Presented optimization algorithms can be used for a design of new energy harvesting systems or for improving on existing energy harvesting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alkhatib R, Jazar GN, Golnaraghi MF (2004) Optimal design of passive linear suspension using genetic algorithm. J Sound Vib 275:665–691. doi:10.1016/j.jsv.2003.07.007

    Article  Google Scholar 

  • Baekho H, Ho SL, Wooseong K (2007) Optimization of 3.5-in. HDD spindle motors for OP-vibration performance: theoretical prediction and experimental verification. Microsyst Technol 13(8–10):759–766. doi:10.1007/s00542-006-0270-4

    Google Scholar 

  • Benasciutti D, Moro L, Zelenika S, Brusa E (2010) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol 16(5):657–668. doi:10.1007/s00542-009-1000-5

    Article  Google Scholar 

  • Buren T, Troster G (2007) Design and optimization of a linear vibration-driven electromagnetic micro-power generator. Sensors and Actuators A 135(2):765–775. doi:10.1016/j.sna.2006.08.009

    Article  Google Scholar 

  • Chao PCP, Wu SC (2007) Optimal design of magnetic zooming mechanism used in cameras of mobile phones via genetic algorithm. IEEE Trans Magn 43(6):2579–2581. doi:10.1109/TMAG.2007.893317

    Article  Google Scholar 

  • Chiu CW, Chao PCP, Wu DY (2007) Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm. IEEE Trans Magn 43(6):2582–2584. doi:10.1109/TMAG.2007.893320

    Article  Google Scholar 

  • Christophe S et al (2008) Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators. Microsyst Technol 14(4–5):653–658. doi:10.1007/s00542-007-0494-y

    Google Scholar 

  • Duan Y, Harley RG, Habetler TGA (2009) Useful multi-objective optimization design method for PM motors considering nonlinear material properties. Energy Conversion Congress and Exposition 187–193. doi: 10.1109/ECCE.2009.5316144

  • Engesser M, Franke AR, Maute M, Meisel DC, Korvink J (2010) A robust and flexible optimization technique for efficient shrinking of MEMS accelerometers. Microsyst Technol 16(4):647–654. doi:10.1007/s00542-009-0973-4

    Article  Google Scholar 

  • Hadas Z, Singule V, Ondrusek C, Kluge M (2007) Simulation of Vibration Power Generator. Recent Advances in Mechatronics 245–250. doi: 10.1007/978-3-540-73956-2_69

  • Hadas Z, Ondrusek C, Singule V, Kluge M (2008a) Vibration Power Generator for Aeronautics Applications. In: Proceedings of the 10th Anniversary international conference of the EUSPEN, vol I Zurich, pp 46–50

  • Hadas Z, Zouhar J, Singule V, Ondrusek C (2008b) Design of Energy Harvesting Generator Base on Rapid Prototyping Parts. In: proceedings of IEEE 13th Power Electronics and Motion Control Conference Poznan: 1665–1669. doi: 10.1109/EPEPEMC.2008.4635506

  • Hadas Z, Ondrusek C, Kurfurst J (2009) Optimization of vibration power generator parameters using self-organizing migrating algorithm. Recent Advances in Mechatronics 2008–2009. Springer-Verlag, Berlin, pp 245–250. doi: 10.1007/978-3-642-05022-0_42

  • Hadas Z, Ondrusek C, Singule V (2010a) Power sensitivity of vibration energy harvester. Microsyst Technol 16(5):691–702. doi:10.1007/s00542-010-1046-4

    Article  Google Scholar 

  • Hadas Z, Singule V, Ondusek C (2010b) Verification of vibration power generator model for prediction of harvested power. Solid State Phenom 164:291–296. doi:10.4028/www.scientific.net/SSP.164.291

    Article  Google Scholar 

  • Hadas Z, Singule V, Vechet S, Ondrusek C (2010c) Development of energy harvesting sources for remote applications as mechatronic systems. In: proceedings of 14th International Power Electronics and Motion Control Conference (EPE/PEMC 2010): 13–19. doi: 10.1109/EPEPEMC.2010.5606867

  • Messine F, Nogarede B, Lagouanelle JL (1998) Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization. IEEE Trans Magn 34(1):299–308. doi:10.1109/20.650361

    Article  Google Scholar 

  • Onwubolu GC, Babu BV (2004) New Optimization Techniques in Engineering (Studies in Fuzziness and Soft Computing), vol 141, Springer–Verlag, Berlin

  • Paradiso JA, Starner T (2005) Energy Scavenging for Mobile and Wireless Electronic. IEEE Pervasive Comput 4(1):18–27. doi:10.1109/MPRV.2005.9

    Article  Google Scholar 

  • Priya S, Inman DJ (2009) Energy Harvesting Technologies. Springer, US

    Book  Google Scholar 

  • Serre C, Pérez-Rodríguez A, Fondevilla N, Martincic E, Morante JR, Esteve J (2009) Linear and non-linear behavior of mechanical resonators for optimized inertial electromagnetic microgenerators. Microsyst Technol 15(8):1217–1223. doi:10.1007/s00542-009-0825-2

    Article  Google Scholar 

  • Singiresu SR (2009) Engineering Optimization: Theory and Practice. John Wiley, Hoboken

    Google Scholar 

  • Skaar SE, Nilsen R (2004) Genetic optimization of electric machines, a state of the art study. NORPIE 2004 NTNU, Trondheim–Norway

  • Song MG, Kim YK, Park NC, Yoo J, Park YP, Onagi N, Akanuma G (2009) Design of moving magnet type pickup actuator using inserted coil. Microsyst Technol 15(10–11):1719–1728. doi:10.1007/s00542-009-0874-6

    Article  Google Scholar 

  • Spreemann D, Hoffmann D, Folkmer B, Manoli Y (2008) Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration. J Micromech Microeng 18(10):1–10. doi:10.1088/0960-1317/18/10/104001

    Article  Google Scholar 

  • Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sensors and Actuators A52(1):8–11. doi:10.1016/0924-4247(96)80118-X

    Google Scholar 

  • Zelinka I (2004) SOMA—Self-Organizing Migrating Algorithm. In: Onwubolu GC, Babu BV (eds) New optimization techniques in engineering (studies in fuzziness and soft computing), vol 141. Springer–Verlag, Berlin

    Google Scholar 

Download references

Acknowledgments

The present work has been supported by European Regional Development Fund in the framework of the research project NETME Centre under the Operational Programme Research and Development for Innovation. Reg. Nr. CZ.1.05/2.1.00/01.0002, id code: ED0002/01/01, project name: NETME Centre–New Technologies for Mechanical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenek Hadas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadas, Z., Kurfurst, J., Ondrusek, C. et al. Artificial intelligence based optimization for vibration energy harvesting applications. Microsyst Technol 18, 1003–1014 (2012). https://doi.org/10.1007/s00542-012-1432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1432-1

Keywords

Navigation