Skip to main content
Log in

Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26

    Article  Google Scholar 

  • Chen SC, Cahill DG, Grigoropoulos CP (2000) Melting and surface deformation in pulsed laser surface micromodification of Ni-P Disks. J Heat Transfer 122:107–112

    Article  Google Scholar 

  • Chen CS, Breslauer DN, Luna J, Grimes A, Chin W, Lee L, Khine M (2008) Shrinky-Dink microfluidics: 3D polystyrene chips. Lab Chip 8:622–624

    Article  Google Scholar 

  • Darain F, Gan KL, Tjin SC (2009) Antibody immobilization on to polystyrene substrate—on-chip immunoassay for horse IgG based on fluorescence. Biomed Microdevices 11:653–661

    Article  Google Scholar 

  • Dolnik V, Liu SR, Jovanovich S (2000) Capillary electrophoresis on microchip. Electrophoresis 21:41–54

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281

    Article  Google Scholar 

  • Gerlach A, Knebel G, Guber AE, Heckele M, Herrmann D, Muslia A, Sshaller T (2002) Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis. Microsyst Technol 7:265–268

    Article  Google Scholar 

  • Hoek I, Tho F, Arnold WM (2010) Sodium hydroxide treatment of PDMS based microfluidic devices. Lab Chip 10:2283–2285

    Article  Google Scholar 

  • Huang SM, Sun Z, Luk’yanchuk BS, Hong MH, Shi LP (2005) Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon. Appl Phys Lett 86:161911

    Article  Google Scholar 

  • Huang YG, Liu SB, Yang W, Yu CX (2010) Surface roughness analysis and improvement of PMMA-based microfluidic chip chambers by CO2 laser cutting. Appl Surf Sci 256:1675–1678

    Article  Google Scholar 

  • Huft J, Da Costa DJ, Walker D, Hansen CL (2010) Three-dimensional large-scale microfluidic integration by laser ablation of interlayer connections. Lab Chip 10:2358–2365

    Article  Google Scholar 

  • Jakeway SC, Mello AJ, Russell EL (2000) Miniaturized total analysis systems for biological analysis. Fresenius J Anal Chem 366:525–539

    Article  Google Scholar 

  • Jankowski P, Ogonczyk D, Kosinski A, Lisowski W, Garstecki P (2011) Hydrophobic modification of polycarbonate for reproducible and stable formation of biocompatible microparticles. Lab Chip 11:748–752

    Article  Google Scholar 

  • Kaur J, Boro RC, Wangoo N, Singh KR, Suri CR (2008) Direct hapten coated immunoassay format for the detection of atrazine and 2, 4-dichlorophenoxyacetic acid herbicides. Anal Chim Acta 607:92–99

    Article  Google Scholar 

  • Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2:242–246

    Article  Google Scholar 

  • Kodzius R, Xiao K, Wu J, Yi X, Gong X, Foulds I, Wen W (2011) Inhibitory effect of common microfluidic materials on PCR outcome. Sens Actuators B Chem. doi:10.1016/j.snb.2011.10.044

  • Li HW, Fan YQ, Foulds I (2012) Rapid and low cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser. Adv Mater Res 403–408:4344–4348

    Google Scholar 

  • Lim CT, Low HY, Ng JKK, Liu WT, Zhang Y (2009) Fabrication of three-dimensional hemispherical structures using photolithography. Microfluid Nanofluid 7:721–726

    Article  Google Scholar 

  • Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 118:2618–2622

    Article  Google Scholar 

  • Liu HB, Gong HQ (2009) Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser. J Micromech Microeng 19:037002

    Article  Google Scholar 

  • Martynova L, Locascio LE, Gaitan M, Kramer GW, Christensen RG, MacCrehan WA (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69:4783–4789

    Article  Google Scholar 

  • Nayak NC, Lam Y, Yue C, Sinha TA (2008) CO2-laser micromachining of PMMA: the effect of polymer molecular weight. J Micromech Microeng 18:095020

    Article  Google Scholar 

  • Ogonczyk D, Wegrzyn J, Jankowski P, Dabrowski B, Garstecki P (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327

    Article  Google Scholar 

  • Pla-Roca M, Juncker D (2011) PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays. Methods in mol biol (Clifton, NJ) 671:177–194

    Article  Google Scholar 

  • Qi H, Chen T, Yao LY, Zuo TC (2009) Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt Laser Eng 47:594–598

    Article  Google Scholar 

  • Reedy CR, Price CW, Sniegowski J, Ferrance JP, Begley M, Landers JP (2011) Solid phase extraction of DNA from biological samples in a post-based, high surface area poly(methyl methacrylate) (PMMA) microdevice. Lab Chip 11:1603–1611

    Article  Google Scholar 

  • Rotting O, Ropke W, Becker H, Gartner C (2002) Polymer microfabrication technologies. Microsyst Technol 8:32–36

    Article  Google Scholar 

  • Snakenborg D, Klank H, Kutter JP (2004) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14:182–189

    Article  Google Scholar 

  • Tolstopyatov EM (2005) Ablation of polytetrafluoroet-hylene using a continuous CO2 laser beam. J Phys D Appl Phys 38:1993–1999

    Article  Google Scholar 

  • Urech L, Lippert T (2010) Photoablation of polymer materials. Photochemistry and Photophysics of Polymer Materials. Wiley, New York, pp 541–568

  • Wu SH (1970) Surface and Interfacial Tensions of Polymer Melts II. Poly(methyl methacrylate), Poly(n-butyl methacrylate) and Polystyrene. J Phys Chem 74:632–638

    Article  Google Scholar 

  • Yao X, Chen Z, Chen G (2009) Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates. Electrophoresis 30:4225–4229

    Article  MathSciNet  Google Scholar 

  • Yi X, Kodzius R, Gong X, Xiao K, Wen W (2010) A simple method of fabricating mask-free microfluidic devices for biological analysis. Biomicrofluidics 4(3). doi:10.1063/1.3487796

  • Young EWK, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, Huttenlocher A, Beebe DJ (2011) Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal Chem 83:1408–1417

    Article  Google Scholar 

  • Yuan DJ, Das S (2007) Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. J Appl Phys 101:024901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Fan, Y., Kodzius, R. et al. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18, 373–379 (2012). https://doi.org/10.1007/s00542-011-1410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1410-z

Keywords

Navigation