Skip to main content

Advertisement

Log in

CO2 Laser Fabrication of a Passive continuous-flow T-shaped Polymethyl Methacrylate (PMMA) Micromixer

  • Research
  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Since the emergence of microfluidics, the demand for microfluidic devices is ever increasing. Polymethyl methacrylate (PMMA) is extensively used to manufacture microfluidic devices because it is cheap, disposable, and biocompatible. CO2 laser micromachining of PMMA is cheap, fast, and efficient. However, thermal defects affect the process. In this work, a passive continuous-flow T-shaped micromixer was fabricated using a low-power CO2 laser. Microchannels were fabricated on PMMA substrates coated with a 1-µm layer of 99.95% pure aluminium. The power and speed of the laser varied from 1.5 to 7.5 W and 5 to 17.5 mm/s respectively. The effects of the deposited energy on surface roughness, heat-affected zone, and volumetric removal rate were examined. The microchannels were characterized to get the suitable dimensions for the micromixer’s microchannel which was fabricated at 3.0 W and 17.5 mm/s. The micromixer was bonded using the microwave welding technique and tested for leakage using purple dye by varying the flow pressure at intervals of 100 kPa for 20 min. Up to 1.5 MPa, no leakage occurred. Beyond 1.5 MPa, any increase in pressure resulted in leakage from the inlet tubes. Coating PMMA substrates with 99.95% pure aluminium before fabrication reduces thermal defects and improves efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Helmy, M.O., Fath El-Bab, A.M., El-Hofy, H.: Elimination of clogging in PMMA microchannels using Water assisted CO2 laser micromachining. Appl. Mech. Mater. 799–800 (Oct. 2015). https://doi.org/10.4028/www.scientific.net/amm.799-800.407

  2. Prakash, S., Kumar, S.: Fabrication of microchannels on transparent PMMA using CO2 laser (10.6 µm) for microfluidic applications: An experimental investigation. Int. J. Precis Eng. Manuf. 16(2), 361–366 (Feb. 2015). https://doi.org/10.1007/s12541-015-0047-8

  3. Aravind, T., Boominathasellarajan, S., Arunachalam, N.: Fabrication of micro-channels on Polymethyl Methacrylate (PMMA) plates by thermal softening process using nichrome wire: Tool Design and Surface Property evaluation. Procedia Manuf. 53, 182–188 (2021). https://doi.org/10.1016/j.promfg.2021.06.088

    Article  Google Scholar 

  4. Jiang, X., Chandrasekar, S., Wang, C.: A laser microwelding method for assembly of polymer based microfluidic devices. Opt. Lasers Eng. 66, 98–104 (2015). https://doi.org/10.1016/j.optlaseng.2014.08.014

    Article  Google Scholar 

  5. Nasser, G.A., Abdel-Mawgood, A.L., Abouelsoud, A.A., Mohamed, H., Umezu, S., El-Bab, A.M.R.F.: New cost effective design of PCR heating cycler system using Peltier plate without the conventional heating block. J. Mech. Sci. Technol. 35(7), 3259–3268 (2021). https://doi.org/10.1007/s12206-021-0646-5

    Article  Google Scholar 

  6. Chen, X., Li, T., Shen, J.: CO2 laser ablation of microchannel on PMMA substrate for effective fabrication of microfluidic chips. Int. Polym. Process. 31(2), 233–238 (2016). https://doi.org/10.3139/217.3184

    Article  Google Scholar 

  7. Konari, P.R., Clayton, Y.D., Vaughan, M.B., Khandaker, M., Hossan, M.R.: Experimental analysis of laser micromachining of microchannels in common microfluidic substrates. Micromachines. 12(2), 1–13 (2021). https://doi.org/10.3390/mi12020138

    Article  Google Scholar 

  8. Zhang, S., Chen, X.: Secondary bonding of PMMA micromixer with high-pressure. Microchem J. 144, 339–344 (Jan. 2019). https://doi.org/10.1016/j.microc.2018.09.026

  9. Zhang, S.J., Shin, Y.C.: “Effective methods for fabricating trapezoidal shape microchannel of arbitrary dimensions on polymethyl methacrylate (PMMA) substrate by a CO2 laser,” Int. J. Adv. Manuf. Technol, vol. 93, no. 1–4, pp. 1079–1094, Oct. doi: (2017). https://doi.org/10.1007/s00170-017-0445-4

  10. Prakash, S., Kumar, S.: “Fabrication of microchannels: A review,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf, vol. 229, no. 8, pp. 1273–1288, Aug. doi: (2015). https://doi.org/10.1177/0954405414535581

  11. Criales, L.E., Orozco, P.F., Medrano, A., Rodŕguez, C.A., Özel, T.: “Effect of Fluence and Pulse Overlapping on Fabrication of Microchannels in PMMA/PDMS Via UV Laser Micromachining: Modeling and Experimentation,” Mater. Manuf. Process, vol. 30, no. 7, pp. 890–901, Jul. doi: (2015). https://doi.org/10.1080/10426914.2015.1004690

  12. Korkmaz, E., Onler, R., Ozdoganlar, O.B.: Micromilling of Poly(methyl methacrylate, PMMA) using single-crystal Diamond Tools. Procedia Manuf. 10, 683–693 (2017). https://doi.org/10.1016/j.promfg.2017.07.017

    Article  Google Scholar 

  13. Biswas, S., Mandal, K., Roy, N., Biswas, R., Kuar, A.S.: “Study on kerf width deviation of microchannel with various medium in laser transmission cutting by diode pump fiber laser,” in Materials Today: Proceedings, vol. 26, pp. 804–807, doi: (2019). https://doi.org/10.1016/j.matpr.2019.12.419

  14. Prakash, S., Kumar, S.: Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask. Opt. Laser Technol. 94, 180–192 (Sep. 2017). https://doi.org/10.1016/j.optlastec.2017.03.034

  15. Prakash, S., Kumar, S.: Experimental and theoretical analysis of defocused CO2 laser microchanneling on PMMA for enhanced surface finish. J. Micromechanics Microengineering. 27(2) (Feb. 2017). https://doi.org/10.1088/1361-6439/27/2/025003

  16. Dudala, S., Rao, L.T., Dubey, S.K., Javed, A., Goel, S.: “Experimental characterization to fabricate CO2 laser ablated PMMA microchannel with homogeneous surface,” in Materials Today: Proceedings, vol. 28, pp. 804–807, doi: (2019). https://doi.org/10.1016/j.matpr.2019.12.302

  17. Tangwarodomnukun, V., Chen, H.Y.: Laser ablation of PMMA in air, water, and ethanol environments. Mater. Manuf. Process. 30(5), 685–691 (May 2015). https://doi.org/10.1080/10426914.2014.994774

  18. Helmy, M.O., El-Bab, A.R.F., El-Hofy, H.A.: “Fabrication and characterization of polymethyl methacrylate microchannel using dry and underwater CO2 laser,” Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst, vol. 232, no. 1, pp. 23–30, Jan. doi: (2018). https://doi.org/10.1177/2397791417749700

  19. Okello, J.L., El-Bab, A.M.R.F., Yoshino, M., El-Hofy, H.A., Hassan, M.A.: Modelling of Surface Roughness in CO2 laser ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) using adaptive neuro-fuzzy inference system (ANFIS). Oct. (2022). https://doi.org/10.1115/IMECE2022-92024

    Article  Google Scholar 

  20. Khamar, P., Prakash, S.: “Investigation of dimensional accuracy in CO2 laser cutting of PMMA,” in Materials Today: Proceedings, Jan. vol. 28, pp. 2381–2386, doi: (2020). https://doi.org/10.1016/j.matpr.2020.04.711

  21. Prakash, S., Kumar, S.: “CO2 Laser Microchanneling Process: Effects of Compound Parameters and Pulse Overlapping,” in IOP Conference Series: Materials Science and Engineering, Oct. vol. 149, no. 1, doi: (2016). https://doi.org/10.1088/1757-899X/149/1/012018

  22. Ali, U., Karim, K.J.B.A., Buang, N.A.: A review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 55(4), 678–705 (2015). https://doi.org/10.1080/15583724.2015.1031377

    Article  Google Scholar 

  23. Tasé Velázquez, D.R., Helleno, A.L., de Oliveira, M.C., Fals, H.C., Macias, E.J.: “Fuzzy logic-based inference system for prediction of energy input in laser metal deposited Aisi316 single-beads,” 32nd Eur. Model. Simul. Symp. EMSS 2020, pp. 400–409, doi: (2020). https://doi.org/10.46354/i3m.2020.emss.058

  24. Gao, Z.Z., Liu, W., Liu, Z.Q., Yue, Z.F.: “Experiment and simulation study on the creep behavior of PMMA at different temperatures,” Polym. - Plast. Technol. Eng, vol. 49, no. 14, pp. 1478–1482, Oct. doi: (2010). https://doi.org/10.1080/03602559.2010.496429

  25. Ravi-Kumar, S., Lies, B., Zhang, X., Lyu, H., Qin, H.: “Laser ablation of polymers: a review,” Polymer International, vol. 68, no. 8. John Wiley and Sons Ltd, pp. 1391–1401, Aug. 01, doi: (2019). https://doi.org/10.1002/pi.5834

  26. Rajkumar, T., Muthupandiyan, N., Vijayakumar, C.T.: “Synthesis and investigation of thermal properties of PMMA-maleimide-functionalized reduced graphene oxide nanocomposites,” J. Thermoplast. Compos. Mater, vol. 33, no. 1, pp. 85–96, Jan. doi: (2020). https://doi.org/10.1177/0892705718804595

  27. Ravi-Kumar, S., Lies, B., Lyu, H., Qin, H.: “Laser ablation of polymers: A review,” vol. 34, pp. 316–327, doi: (2019). https://doi.org/10.1016/j.promfg.2019.06.155

  28. Lv, H., Chen, X., Zeng, X.: Optimization of micromixer with Cantor fractal baffle based on simulated annealing algorithm. Chaos, Solitons & Fractals. 148, 111048 (Jul. 2021). https://doi.org/10.1016/J.CHAOS.2021.111048

  29. Lv, H., Chen, X., Li, X., Ma, Y., Zhang, D.: “Finding the optimal design of a Cantor fractal-based AC electric micromixer with film heating sheet by a three-objective optimization approach,” Int. Commun. Heat Mass Transf, vol. 131, p. 105867, Feb. doi: (2022). https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2021.105867

  30. Lv, H., Chen, X.: New insights into the mechanism of fluid mixing in the micromixer based on alternating current electric heating with film heaters. Int. J. Heat. Mass. Transf. 181, 121902 (Dec. 2021). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121902

  31. Lv, H., Chen, X., Wang, X., Zeng, X., Ma, Y.: A novel study on a micromixer with Cantor fractal obstacle through grey relational analysis. Int. J. Heat. Mass. Transf. 183, 122159 (Feb. 2022). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.122159

  32. Lee, C.-Y., Fu, L.-M.: Recent advances and applications of micromixers. Sens. Actuators B Chem. 259, 677–702 (Apr. 2018). https://doi.org/10.1016/j.snb.2017.12.034

  33. Raza, W., Hossain, S., Kim, K.Y.: “A review of passive micromixers with a comparative analysis,” Micromachines, vol. 11, no. 5. MDPI AG, May 01, doi: (2020). https://doi.org/10.3390/MI11050455

  34. Borgohain, P., Arumughan, J., Dalal, A., Natarajan, G.: Design and performance of a three-dimensional micromixer with curved ribs. Chem. Eng. Res. Des. 136, 761–775 (Aug. 2018). https://doi.org/10.1016/j.cherd.2018.06.027

  35. Lobasov, A.S., Minakov, A.V.: Analyzing mixing quality in a T-shaped micromixer for different fluids properties through numerical simulation. Chem. Eng. Process. - Process. Intensif. 124, 11–23 (Feb. 2018). https://doi.org/10.1016/j.cep.2017.11.004

  36. Nasser, G.A., Fath El-Bab, A.M.R., Mohamed, H., Abouelsoud, A.: “Low cost micro-droplet formation chip with a hand-operated suction syringe,” Proc. – 2018 IEEE 18th Int. Conf. Bioinforma. Bioeng. BIBE 2018, no. May pp. 73–78, 2018, doi: (2019). https://doi.org/10.1109/BIBE.2018.00021

  37. Bilican, I., Tahsin Guler, M.: Assessment of PMMA and polystyrene based microfluidic chips fabricated using CO2 laser machining. Appl. Surf. Sci. 534, 147642 (2020). https://doi.org/10.1016/j.apsusc.2020.147642

    Article  Google Scholar 

  38. Romoli, L., Tantussi, G., Dini, G.: “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng, vol. 49, no. 3, pp. 419–427, Mar. doi: (2011). https://doi.org/10.1016/j.optlaseng.2010.11.013

  39. Acherjee, B., Prakash, S., Kuar, A.S., Mitra, S.: Grey relational analysis based optimization of underwater nd:YAG laser micro-channeling on PMMA. Procedia Eng. 97, 1406–1415 (2014). https://doi.org/10.1016/j.proeng.2014.12.422

    Article  Google Scholar 

  40. Prakash, S., Kumar, S.: “Experimental investigations and analytical modeling of multi-pass CO2 laser processing on PMMA,” Precis. Eng, vol. 49, pp. 220–234, Jul. doi: (2017). https://doi.org/10.1016/j.precisioneng.2017.02.010

  41. Ranganathan, N., Anto Lawrence, F., Rajkumar, S., Joseph Bensingh, R., Abdul Kader, M., Nayak, S.K.: “Influence of surface roughness on tribological and mechanical properties of micro-milled and laser ablated poly (methyl methacrylate) PMMA organic glass,” Polym. Test, vol. 81, no. October p. 106184, 2020, doi: (2019). https://doi.org/10.1016/j.polymertesting.2019.106184

  42. Rajasekaran, T., Palanikumar, K., Arunachalam, S.: Investigation on the turning parameters for Surface Roughness using Taguchi Analysis. Procedia Eng. 51, 781–790 (2013). https://doi.org/10.1016/j.proeng.2013.01.112

    Article  Google Scholar 

  43. Biswas, S., Roy, N., Biswas, R., Kuar, A.S.: “Experimental investigation of varying laser pass on micro-channel characteristics of thick pmma by laser transmission micromachining,” Mater. Today Proc, vol. 18, pp. 3514–3520, doi: (2019). https://doi.org/10.1016/j.matpr.2019.07.280

Download references

Acknowledgements

The authors gratefully acknowledge JICA for the esteemed TICAD7 scholarship offered to the first author. Special acknowledgment is extended to the Science and Technology Development Fund (STDF-12417) project for the equipment in the Microfabrication center used in this research. The authors sincerely appreciate Moataz Abdel Karim, Shimaa Elsayed Ibrahim, Asmaa Wadee, and Mohamed Adel for their incredible assistance.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Job Lazarus Okello: Conceptualization, Methodology, Software, Data curation, Visualization, Formal analysis, Investigation, Validation, Writing-Original draft Preparation. Ahmed M. R. Fath El-Bab: Supervision, Resources, Project administration, Writing-Reviewing, and Editing. Masahiko Yoshino: Supervision, Writing-Reviewing, and Editing. Hassan A. El-Hofy: Supervision, Resources, Project administration, Writing-Revision, and Editing.

Corresponding author

Correspondence to Job Lazarus Okello.

Ethics declarations

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okello, J.L., El-Bab, A.M.F., Yoshino, M. et al. CO2 Laser Fabrication of a Passive continuous-flow T-shaped Polymethyl Methacrylate (PMMA) Micromixer. Lasers Manuf. Mater. Process. 10, 373–388 (2023). https://doi.org/10.1007/s40516-023-00212-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-023-00212-x

Keywords

Navigation