Skip to main content
Log in

Molecular signatures of noncancerous liver tissue can predict the risk for late recurrence of hepatocellular carcinoma

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is an aggressive malignancy mainly due to tumor metastases or recurrence even after undergoing potentially curative treatment. There are two types of HCC recurrence. The early and late tumor recurrences appear in distinct biological contexts, and their clinical courses are quite different. Therefore, it is important to precisely and distinctly discriminate the risk of each type of HCC recurrence. Many researchers have used DNA microarray technology to reclassify HCC with respect to its malignant potential. Some of these studies successfully identified specific gene-expression signatures derived from the cancerous tissues of HCC for predicting the early recurrence due to intrahepatic metastasis. However, there are no well-defined predictors for late recurrence. Recently, a few studies have focused on the nontumorous portion of liver tissues to predict late recurrence, possibly due to de novo hepatocarcinogenesis based on the idea of “field cancerization.” This study reviewed the possible value of a gene-expression analysis of noncancerous liver tissue to clarify the risk for multicentric late recurrence of HCC. These findings may have important implications for chemopreventive strategies and tailored surveillance programs. Furthermore, this approach may also be applicable to other multifocal tumors, such as head and neck carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.

    Article  PubMed  Google Scholar 

  2. Koike K. Steatosis, liver injury, and hepatocarcinogenesis in hepatitis C viral infection. J Gastroenterol. 2009;44:82–8.

    Article  PubMed  Google Scholar 

  3. Sherlock S. Viruses and hepatocellular carcinoma. Gut. 1994;35:828–32.

    Article  CAS  PubMed  Google Scholar 

  4. Tarao K, Rino Y, Ohkawa S, Shimizu A, Tamai S, Miyakaswa K, et al. Association between high serum alanine aminotransferase levels and more rapid development and higher rate of incidence of hepatocellular carcinoma in patients with hepatitis C virus-associated cirrhosis. Cancer. 1999;86:589–95.

    Article  CAS  PubMed  Google Scholar 

  5. Sakamoto M. Early HCC: diagnosis and molecular markers. J Gastroenterol. 2009;44:108–11.

    Article  CAS  PubMed  Google Scholar 

  6. Utsunomiya T, Matsumata T, Adachi E, Honda H, Sugimachi K. Limitations of current preoperative liver imaging techniques for intrahepatic metastatic nodules of hepatocellular carcinoma. Hepatology. 1992;16:694–701.

    Article  CAS  PubMed  Google Scholar 

  7. Shimada M, Takenaka K, Gion T, Fujiwara Y, Kajiyama K, Maeda T, et al. Prognosis of recurrent hepatocellular carcinoma: a 10-year surgical experience in Japan. Gastroenterology. 1996;111:720–6.

    Article  CAS  PubMed  Google Scholar 

  8. Utsunomiya T, Shimada M, Taguchi KI, Hasegawa H, Yamashita Y, Hamatsu T, et al. Clinicopathologic features and postoperative prognosis of multicentric small hepatocellular carcinoma. J Am Coll Surg. 2000;190:331–5.

    Article  CAS  PubMed  Google Scholar 

  9. Iizuka N, Oka M, Yamada Okabe H, Nishida M, Maeda Y, Mori N, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet. 2003;361:923–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kurokawa Y, Matoba R, Takemasa I, Nagano H, Dono K, Nakamori S, et al. Molecular-based prediction of early recurrence in hepatocellular carcinoma. J Hepatol. 2004;41:284–91.

    Article  CAS  PubMed  Google Scholar 

  11. Ho MC, Lin JJ, Chen CN, Chen CC, Lee H, Yang CY, et al. A gene expression profile for vascular invasion can predict the recurrence after resection of hepatocellular carcinoma: a microarray approach. Ann Surg Oncol. 2006;13:1474–84.

    Article  PubMed  Google Scholar 

  12. Wang SM, Ooi LL, Hui KM. Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma. Clin Cancer Res. 2007;13:6275–83.

    Article  CAS  PubMed  Google Scholar 

  13. Woo HG, Park ES, Cheon JH, Kim JH, Lee JS, Park BJ, et al. Gene expression-based recurrence prediction of hepatitis B virus-related human hepatocellular carcinoma. Clin Cancer Res. 2008;14:2056–64.

    Article  CAS  PubMed  Google Scholar 

  14. Somura H, Iizuka N, Tamesa T, Sakamoto K, Hamaguchi T, Tsunedomi R, et al. A three-gene predictor for early intrahepatic recurrence of hepatocellular carcinoma after curative hepatectomy. Oncol Rep. 2008;19:489–95.

    CAS  PubMed  Google Scholar 

  15. Yoshioka S, Takemasa I, Nagano H, Kittaka N, Noda T, Wada H, et al. Molecular prediction of early recurrence after resection of hepatocellular carcinoma. Eur J Cancer. 2009;45:881–9.

    Article  CAS  PubMed  Google Scholar 

  16. Poon RT, Fan ST, Ng IO, Lo CM, Liu CL, Wong J. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer. 2000;89:500–7.

    Article  CAS  PubMed  Google Scholar 

  17. Takenaka K, Adachi E, Nishizaki T, Hiroshige K, Ikeda T, Tsuneyoshi M, et al. Possible multicentric occurrence of hepatocellular carcinoma: a clinicopathological study. Hepatology. 1994;19:889–94.

    Article  CAS  PubMed  Google Scholar 

  18. Kumada T, Nakano S, Takeda I, Sugiyama K, Osada T, Kiriyama S, et al. Patterns of recurrence after initial treatment in patients with small hepatocellular carcinoma. Hepatology. 1997;25:87–92.

    Article  CAS  PubMed  Google Scholar 

  19. Kim JW, Ye Q, Forgues M, et al. Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatology. 2004;39:518–27.

    Article  CAS  PubMed  Google Scholar 

  20. Utsunomiya T, Okamoto M, Wakiyama S, Hashimoto M, Fukuzawa K, Ezaki T, et al. Specific gene-expression profiles of noncancerous liver tissue predict the risk for multicentric occurrence of hepatocellular carcinoma in hepatitis C virus-positive patients. Ann Surg Oncol. 2006;13:947–54. (T. Utsunomiya, M. Okamoto: equal contribution).

    Article  PubMed  Google Scholar 

  21. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10:99–111.

    Article  CAS  PubMed  Google Scholar 

  22. Iizuka N, Hamamoto Y, Tsunedomi R, Oka M. Translational microarray systems for outcome prediction of hepatocellular carcinoma. Cancer Sci. 2008;99:659–65.

    Article  CAS  PubMed  Google Scholar 

  23. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995–2004.

    Article  CAS  PubMed  Google Scholar 

  24. Mas VR, Fisher RA, Archer KJ, Yanek KC, Williams B, Dumur CI, et al. Genes associated with progression and recurrence of hepatocellular carcinoma in hepatitis C patients waiting and undergoing liver transplantation: preliminary results. Transplantation. 2007;83:973–81.

    Article  PubMed  Google Scholar 

  25. Kudo M. Multistep human hepatocarcinogenesis: correlation of imaging with pathology. J Gastroenterol. 2009;44:112–8.

    Article  PubMed  Google Scholar 

  26. Torok NJ. Recent advances in the pathogenesis and diagnosis of liver fibrosis. J Gastroenterol. 2008;43:315–21.

    Article  CAS  PubMed  Google Scholar 

  27. Utsunomiya T, Okamoto M, Hashimoto M, Yoshinaga K, Shiraishi T, Tanaka F, et al. A gene-expression signature can quantify the degree of hepatic fibrosis in the rat. J Hepatol. 2004;41:399–406.

    Article  CAS  PubMed  Google Scholar 

  28. Utsunomiya T, Okamoto M, Wakiyama S, Hashimoto M, Fukuzawa K, Ezaki T, et al. A specific gene-expression signature quantifies the degree of hepatic fibrosis in patients with chronic liver disease. World J Gastroenterol. 2007;13:383–90.

    CAS  PubMed  Google Scholar 

  29. Iizuka N, Hamamoto Y, Oka M. Predicting individual outcomes in hepatocellular carcinoma. Lancet. 2004;364:1837–9.

    Article  PubMed  Google Scholar 

  30. Liver Cancer Study Group of Japan. The general rules for the clinical and pathological study of primary liver cancer. 4th ed. Tokyo: Kanahara Shuppan; 2000. p. 32–3.

    Google Scholar 

  31. Ueno S, Aoki D, Maeda T, Kubo F, Hokotate H, Fukukura Y, et al. Preoperative assessment of multicentric occurrence in synchronous small and multiple hepatocellular carcinoma based on image-patterns and histological grading of non-cancerous region. Hepatol Res. 2004;29:24–30.

    Article  PubMed  Google Scholar 

  32. Sakon M, Umeshita K, Nagano H, Eguchi H, Kishimoto S, Miyamoto A, et al. Clinical significance of hepatic resection in hepatocellular carcinoma: analysis by disease-free survival curves. Arch Surg. 2000;135:1456–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ikeda K, Arase Y, Saitoh S, Kobayashi M, Suzuki Y, Suzuki F, et al. Interferon beta prevents recurrence of hepatocellular carcinoma after complete resection or ablation of the primary tumor: a prospective randomized study of hepatitis C virus-related liver cancer. Hepatology. 2000;32:228–32.

    Article  CAS  PubMed  Google Scholar 

  34. Muto Y, Moriwaki H, Ninomiya M, Adachi S, Saito A, Takasaki KT, et al. Prevention of second primary tumors by an acyclic retinoid, polyprenoic acid, in patients with hepatocellular carcinoma. N Engl J Med. 1996;334:1561–7.

    Article  CAS  PubMed  Google Scholar 

  35. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomized trial. Lancet. 2000;356:802–7.

    Article  CAS  PubMed  Google Scholar 

  36. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  37. Larsson N, Segerman B, Howell B, Fridell K, Cassimeris L, Gullberg M. Op18/stathmin mediates multiple region-specific tubulin and microtubule-regulating activities. J Cell Biol. 1999;146:1289–302.

    Article  CAS  PubMed  Google Scholar 

  38. Singer S, Ehemann V, Brauckhoff A, Keith M, Vreden S, Schirmacher P, et al. Protumorigenic overexpression of stathmin/Op18 by gain-of-function mutation in p53 in human hepatocarcinogenesis. Hepatology. 2007;46:759–68.

    Article  CAS  PubMed  Google Scholar 

  39. Malz M, Weber A, Singer S, Riehmer V, Bissinger M, Riener MO, et al. Overexpression of far upstream element binding proteins: a mechanism regulating proliferation and migration in liver cancer cells. Hepatology. 2009;50:1130–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF, et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology. 2008;135:257–69.

    Article  CAS  PubMed  Google Scholar 

  41. Vauthey JN, Walsh GL, Vlastos G, Lauwers GY. Importance of field cancerisation in clinical oncology. Lancet Oncol. 2000;1:15–6.

    Article  CAS  PubMed  Google Scholar 

  42. Nishida K, Mine S, Utsunomiya T, Inoue H, Okamoto M, Udagawa H, et al. Global analysis of altered gene expressions during the process of esophageal squamous cell carcinogenesis in the rat: a study combined with a laser microdissection and a cDNA microarray. Cancer Res. 2005;65:401–9.

    CAS  PubMed  Google Scholar 

  43. Yoshiji H, Noguchi R, Kitade M, Kaji K, Ikenaka Y, Namisaki T, et al. Branched-chain amino acids suppress insulin-resistance-based hepatocarcinogenesis in obese diabetic rats. J Gastroenterol. 2009;44:483–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Utsunomiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utsunomiya, T., Shimada, M., Imura, S. et al. Molecular signatures of noncancerous liver tissue can predict the risk for late recurrence of hepatocellular carcinoma. J Gastroenterol 45, 146–152 (2010). https://doi.org/10.1007/s00535-009-0164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0164-1

Keywords

Navigation