Skip to main content

Advertisement

Log in

Optical diagnosis of gastric cancer using near-infrared multichannel Raman spectroscopy with a 1064-nm excitation wavelength

  • Alimmentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Gastric cancer is one of the most common cancers in Japan. The use of endoscopy is increasing, along with the number of histological examinations of specimens obtained by endoscopy. However, it takes several days to reach a diagnosis, which increases the medical expense. Raman spectroscopy is one of the available optical techniques, and the Raman spectrum for each molecule and tissue is characteristic and specific. The present study investigated whether Raman spectroscopy can be used to diagnose gastric cancer.

Methods

A total of 251 fresh biopsy specimens of gastric carcinoma and non-neoplastic mucosa were obtained from 49 gastric cancer patients at endoscopy. Without any pretreatment, the fresh specimens were measured with a near-infrared multichannel Raman spectroscopic system with an excitation wavelength of 1064 nm, and Raman spectra specific for the specimens were obtained. A principal component analysis (PCA) was performed to distinguish gastric cancer and non-neoplastic tissue, and a discriminant analysis was used to evaluate the accuracy of the gastric cancer diagnosis.

Results

The Raman spectra for cancer specimens differed from those for non-neoplastic specimens, especially at around 1644 cm−1. Sensitivity was 66%, specificity was 73%, and accuracy was 70%. The accuracy of diagnosis using the single Raman scattering intensity at 1644 cm−1 was 70%, consistent with the PCA result.

Conclusions

The present results indicate that near-infrared multichannel Raman spectroscopy with a 1064-nm excitation wavelength is useful for gastric cancer diagnosis. Establishment of a Raman diagnostic system for gastric cancer may improve the clinical diagnosis of gastric cancer and be beneficial for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong Kee Song LM, Wilson BC. Endoscopic detection of early upper GI cancers. Best Pract Res Clin Gastroenterol 2005;19:833–856.

    Article  Google Scholar 

  2. Raman CV, Krishnan KS. A new type of secondary radiation. Nature 1928;121:501–502.

    Article  CAS  Google Scholar 

  3. Raman CV. A new radiation. Indian J Phys 1928;2:387–398.

    CAS  Google Scholar 

  4. Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V, et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med 2003;349:546–553.

    Article  PubMed  Google Scholar 

  5. Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma—2nd English Edition. Gastric Cancer 1998;1:10–24.

    Article  PubMed  Google Scholar 

  6. Yan XL, Dong RX, Zhang L, Zhang XJ, Zhang ZW. Raman spectra of single cell from gastrointestinal cancer patients. World J Gastroenterol 2005;11:3290–3292.

    PubMed  Google Scholar 

  7. Hu Y, Shen A, Jiang T, Ai Y, Hu J. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis. Spectrochim Acta A Mol Biomol Spectrosc 2008;69:378–382.

    Article  PubMed  Google Scholar 

  8. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci USA 2005;102:12371–12376.

    Article  PubMed  CAS  Google Scholar 

  9. Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D, et al. In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res 2006;66:3317–3322.

    Article  PubMed  CAS  Google Scholar 

  10. Redd DCB, Feng ZC, Yue KT, Gansler TS. Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis. Appl Spectrosc 1993;47:787–791.

    Article  CAS  Google Scholar 

  11. Frank CJ, Redd DCB, Gansler TS, McCreery RL. Characterization of human breast biopsy near-IR Raman spectroscopy. Anal Chem 1994;66:319–326.

    Article  PubMed  CAS  Google Scholar 

  12. Frank CJ, McCreery RL, Redd DC. Raman spectroscopy of normal and diseased human breast tissues. Anal Chem 1995;67:777–783.

    Article  PubMed  CAS  Google Scholar 

  13. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res 2002;62:5375–5380.

    PubMed  CAS  Google Scholar 

  14. Baker R, Matousek P, Ronayne KL, Parker AW, Rogers K, Stone N. Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. Analyst 2007;132:48–53.

    Article  PubMed  CAS  Google Scholar 

  15. Gniadecka M, Philipsen PA, Sigurdsson S, Wessel S, Nielsen OF, Christensen DH, et al. Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J Invest Dermatol 2004;122:443–449.

    Article  PubMed  CAS  Google Scholar 

  16. Min YK, Yamamoto T, Kohda E, Ito T, Hamaguchi HO. 1064 nm near-infrared multichannel Raman spectroscopy of fresh human lung tissues. J. Raman Spectrosc 2005;36:73–76.

    Article  CAS  Google Scholar 

  17. Yamazaki H, Kaminaka S, Kohda E, Mukai M, Hamaguchi HO. The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy. Radiat Med 2003;21:1–6.

    PubMed  Google Scholar 

  18. Kaminaka S, Ito T, Yamazaki H, Kohda E, Hamaguchi HO. Near-infrared multichannel Raman spectroscopy toward realtime in vivo cancer diagnosis. J. Raman Spectrosc 2002;33:498–502.

    Article  CAS  Google Scholar 

  19. Venkatakrishna K, Kurien J, Pai KM, Valiathan M, Kumar NN, Krishna CM, et al. Optical pathology of oral tissue: a Raman spectroscopy diagnostic method. Curr Sci 2001;80:665–669.

    CAS  Google Scholar 

  20. Malini R, Venkatakrishna K, Kurien J, Pai KM, Rao L, Kartha VB, et al. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study. Biopolymers 2006;81:179–193.

    Article  PubMed  CAS  Google Scholar 

  21. Lyng FM, Faolin EÓ, Conroy J, Meade AD, Knief P, Duffy B, et al. Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp Mol Pathol 2007;82:121–129.

    Article  PubMed  CAS  Google Scholar 

  22. Lau DP, Huang Z, Lui H, Anderson DW, Berean K, Morrison MD, et al. Raman spectroscopy for optical diagnosis in the larynx: preliminary findings. Lasers Surg Med 2005;37:192–200.

    Article  PubMed  Google Scholar 

  23. Lau DP, Huang Z, Lui H, Man CS, Berean K, Morrison MD, et al. Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx—preliminary findings. Lasers Surg Med 2003;32:210–214.

    Article  PubMed  Google Scholar 

  24. Stone N, Stavroulaki P, Kendall C, Birchall M, Barr H. Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Independent Papers. Laryngoscope 2000;110:1756–1763.

    Article  PubMed  CAS  Google Scholar 

  25. Shim MG, Song LM, Marcon NE, Wilson BC. In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem Photobiol 2000;72:146–150.

    Article  PubMed  CAS  Google Scholar 

  26. Shetty G, Kendall C, Shepherd N, Stone N, Barr H. Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer 2006;94:1460–1464.

    Article  PubMed  CAS  Google Scholar 

  27. Kendall C, Stone N, Shepherd N, Geboes K, Warren B, Bennett R, et al. Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett’s oesophagus. J Pathol 2003;200:602–609.

    Article  PubMed  Google Scholar 

  28. Stone N, Kendall CA, Chandratreya N, Shepherd N, Barr H. Near-infrared Raman spectroscopy for detection and classification of gastrointestinal disease. Proc SPIE 2002;4614:117–126.

    Article  Google Scholar 

  29. Molckovsky A, Wong Kee Song LM, Shim MG, Marcon NE, Wilson BC. Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyper-plastic polyps. Gastrointest Endosc 2003;57:396–402.

    Article  PubMed  Google Scholar 

  30. Andrade PO, Bitar RA, Yassoyama K, Martinho H, Santo AME, Bruno PM, et al. Study of normal colorectal tissue by FT-Raman spectroscopy. Anal Bioanal Chem 2007;387:1643–1648.

    Article  PubMed  CAS  Google Scholar 

  31. Liu CH, Das BB, Sha Glassman WL, Tang GC, Yoo KM, Zhu HR, et al. Raman, fluorescence, and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media. J Photochem Photobiol B 1992;30:187–209.

    Article  Google Scholar 

  32. Crow P, Molckovsky A, Stone N, Uff J, Wilson B, Wong Kee Song LM. Assessment of fiberoptic near-infrared Raman spectroscopy for diagnosis of bladder and prostate cancer. Urology 2005;65:1126–1130.

    Article  PubMed  CAS  Google Scholar 

  33. Crow P, Barrass B, Kendall C, Hart-Prieto M, Wright M, Persad R, et al. The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines. Br J Cancer 2005;92:2166–2170.

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi M, Tajiri H, Seike E, Shitaya M, Tounou S, Mine M, et al. Detection of early gastric cancer by a real-time autofluorescence imaging system. Cancer Lett 2001;165:155–159.

    Article  PubMed  CAS  Google Scholar 

  35. Ohkawa A, Miwa H, Namihisa A, Kobayashi O, Nakaniwa N, Ohkusa T, et al. Diagnostic performance of light-induced fluorescence endoscopy for gastric neoplasms. Endoscopy 2004;36:515–521.

    Article  PubMed  CAS  Google Scholar 

  36. Cooney TF, Skinner HT, Angel SM. Comparative study of some fiber-optic remote Raman probe designs. Part I: model for liquids and transparent solids. Appl Spectrosc 1996;50:836–848.

    Article  CAS  Google Scholar 

  37. Cooney TF, Skinner HT, Angel SM. Comparative study of some fiber-optic remote Raman probe designs. Part II: tests of singlefiber, lensed, and flat-and bevel-tip multi-fiber probes. Appl Spectrosc 1996;50:849–860.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawabata, T., Mizuno, T., Okazaki, S. et al. Optical diagnosis of gastric cancer using near-infrared multichannel Raman spectroscopy with a 1064-nm excitation wavelength. J Gastroenterol 43, 283–290 (2008). https://doi.org/10.1007/s00535-008-2160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-008-2160-2

Key words

Navigation