Skip to main content
Log in

Gene expression analysis for predicting gemcitabine resistance in human cholangiocarcinoma

  • Original article
  • Published:
Journal of Hepato-Biliary-Pancreatic Sciences

Abstract

Background

Gemcitabine is a promising drug for cholangiocarcinoma treatment. However, the kinetics and metabolism of this drug in cholangiocarcinoma treatment are not well defined. We aimed to investigate the potential clinical role of gemcitabine metabolism-related genes in the gemcitabine sensitivity of cholangiocarcinoma and identify and characterize novel gemcitabine resistance-related genes.

Methods

Expressions of genes related to gemcitabine sensitivity and gemcitabine metabolism were measured in 10 cholangiocarcinoma cell lines, and the association between gene expression and gemcitabine sensitivity was evaluated. Furthermore, gemcitabine-resistant cell lines were established from YSCCC cells and subjected to genome-wide microarray analysis. The 2-fold upregulated and downregulated genes were then subjected to pathway analysis.

Results

p53R2 mRNA expression was significantly higher in gemcitabine-resistant cell lines (IC50 > 1000 nM), and all subunits of ribonucleotide reductase were upregulated in the established gemcitabine-resistant cell lines. Microarray analysis revealed that the upregulated genes in the resistant cells belonged to the glutathione and pyrimidine metabolism pathways, and that the downregulated genes belonged to the N-glycan biosynthesis pathway.

Conclusions

Increased expression of p53R2 may predict gemcitabine resistance, and upregulated RNR activity may influence gemcitabine resistance in cholangiocarcinoma cells. Glutathione pathway-related genes were induced by continuous exposure to gemcitabine and may contribute to gemcitabine resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004;24:115–25.

    Article  PubMed  Google Scholar 

  3. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet. 2005;366:1303–14.

    Article  PubMed  Google Scholar 

  4. Thomas MB. Biological characteristics of cancers in the gallbladder and biliary tract and targeted therapy. Crit Rev Oncol Hematol. 2007;61:44–51.

    Article  PubMed  Google Scholar 

  5. Olnes MJ, Erlich R. A review and update on cholangiocarcinoma. Oncology. 2004;66:167–79.

    Article  PubMed  Google Scholar 

  6. Anderson CD, Pinson CW, Berlin J, Chari RS. Diagnosis and treatment of cholangiocarcinoma. Oncologist. 2004;9:43–57.

    Article  PubMed  Google Scholar 

  7. Eckel F, Schmid RM. Chemotherapy in advanced biliary tract carcinoma: a pooled analysis of clinical trials. Br J Cancer. 2007;96:896–902.

    Article  PubMed  CAS  Google Scholar 

  8. Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002;3:415–24.

    Article  PubMed  CAS  Google Scholar 

  9. Heinemann V, Schulz L, Issels RD, Plunkett W. Gemcitabine: a modulator of intracellular nucleotide and deoxynucleotide metabolism. Semin Oncol. 1995;22:11–8.

    PubMed  CAS  Google Scholar 

  10. Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995;22:3–10.

    PubMed  CAS  Google Scholar 

  11. Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA, et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res. 1998;58:4349–57.

    PubMed  CAS  Google Scholar 

  12. Achiwa H, Oguri T, Sato S, Maeda H, Niimi T, Ueda R. Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer. Cancer Sci. 2004;95:753–7.

    Article  PubMed  CAS  Google Scholar 

  13. Hopper-Borge E, Xu X, Shen T, Shi Z, Chen ZS, Kruh GD. Human multidrug resistance protein 7 (ABCC10) is a resistance factor for nucleoside analogues and epothilone B. Cancer Res. 2009;69:178–84.

    Article  PubMed  CAS  Google Scholar 

  14. Sebastiani V, Ricci F, Rubio-Viqueira B, Kulesza P, Yeo CJ, Hidalgo M, et al. Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival. Clin Cancer Res. 2006;12:2492–7.

    Article  PubMed  CAS  Google Scholar 

  15. Sugiyama E, Kaniwa N, Kim SR, Kikura-Hanajiri R, Hasegawa R, Maekawa K, et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol. 2007;25:32–42.

    Article  PubMed  CAS  Google Scholar 

  16. Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA. An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res. 2004;64:3761–6.

    Article  PubMed  CAS  Google Scholar 

  17. Goan YG, Zhou B, Hu E, Mi S, Yen Y. Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line. Cancer Res. 1999;59:4204–7.

    PubMed  CAS  Google Scholar 

  18. Nakahira S, Nakamori S, Tsujie M, Takahashi Y, Okami J, Yoshioka S, et al. Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Intl J Cancer. 2007;120:1355–63.

    Article  CAS  Google Scholar 

  19. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene. 2004;23:1539–48.

    Article  PubMed  CAS  Google Scholar 

  20. Zhou B, Mi S, Mo X, Shih J, Tsai J, Hu E, et al. Time and sequence dependence of hydroxyurea in combination with gemcitabine in human KB cells. Anticancer Res. 2002;22:1369–77.

    PubMed  CAS  Google Scholar 

  21. Raphael M, John RM, Raymond L, Pieter D, Marc P, Marc P, et al. Human equilibrative nucleoside transporter 1 and human concentrative nucleoside transporter 3 predict survival after adjuvant Gemcitabine therapy in resected pancreatic adenocarcinoma. Clin Cancer Res. 2009;15:2913–9.

    Article  Google Scholar 

  22. Jose GM, Miriam MA, Javier FC, Adela M, Marcal PA. Nucleoside transporter profiles in human pancreatic cancer cells: role of hCNT1 in 2′,2′-difluorodeoxycytidine-induced cytotoxicity. Clin Cancer Res. 2003;9:5000–8.

    Google Scholar 

  23. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22:7369–75.

    Article  PubMed  CAS  Google Scholar 

  24. Maring JG, Groen HJ, Wachters FM, Uges DR, de Vries EG. Genetic factors influencing pyrimidine-antagonist chemotherapy. Pharmacogenomics J. 2005;5:226–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our immense gratitude to Ms. Yuka Kimura and Ms. Hidemi I for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kimura.

About this article

Cite this article

Sato, J., Kimura, T., Saito, T. et al. Gene expression analysis for predicting gemcitabine resistance in human cholangiocarcinoma. J Hepatobiliary Pancreat Sci 18, 700–711 (2011). https://doi.org/10.1007/s00534-011-0376-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00534-011-0376-7

Keywords

Navigation