Skip to main content
Log in

Modification of fabric in pre-Himalayan granitic rocks by post-emplacement ductile deformation: insights from microstructures, AMS, and U–Pb geochronology of the Paleozoic Kinnaur Kailash Granite and associated Cenozoic leucogranites of the South Tibetan Detachment zone, Himachal High Himalaya

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The present day South Tibetan Detachment (STD) of Higher Himalaya is a system of low-angle normal faults. In the Himachal High Himalaya, the STD hanging wall is characterized by the presence of S-type per-aluminous Paleozoic (~475 Ma) granite called the Kinnaur Kailash Granite (KKG). This granite is later intruded by Cenozoic leucogranites (~18 Ma) in vicinity of the STD zone. In this work, microstructures, anisotropy of magnetic susceptibility (AMS), and U–Pb geochronology were carried out on the KKG and the leucogranites with an aim to (a) understand the conditions of fabric development and (b) decipher the tectonic relationship between deformation along the STD and the evolution of these granites. Microstructural features and magnetic anisotropy indicate that the granites are intensely deformed in vicinity of the STD and preserve their emplacement-related fabric in the interior parts. It is inferred that close to the STD zone, fabrics of both the KKG and the leucogranite are tectonic and are modified by the Cenozoic (~20 Ma) right-lateral slip and extensional tectonics. Magnetic fabric in the interior parts of the KKG is related to its emplacement indicating that original fabric was preserved. U–Pb geochronology of zircons from two samples of the KKG yields crystallization age of 477.6 ± 3.4 and 472 ± 4 Ma. The leucogranite gives a crystallization age of 18.5 ± 0.6 Ma. Zircons from the KKG also reveal signatures of a deformation event (20.6 ± 2.3 Ma) at its rim. It is inferred that deformation of the external rim of the KKG and crystallization of the leucogranites are synchronous and triggered by ductile deformation along the STD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aranguren A, Cuevas J, Tubia JM (1996) Composite magnetic fabrics from S–C mylonites. J Struct Geol 18:863–869

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Benn K (1994) Overprinting of magnetic fabrics in granites by small strains: numerical modeling. Tectonophysics 233:153–162

    Article  Google Scholar 

  • Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93

    Article  Google Scholar 

  • Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DWH, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 95–112

    Google Scholar 

  • Bouchez JL, Gleizes G, Djouadi MT, Rochette P (1990) Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: the example of the Foix pluton (French Pyrenees). Tectonophysics 184:157–171

    Article  Google Scholar 

  • Burchfiel BC, Chen Z, Hodges KV, Liu Y, Royden LH, Deng C, Xu J (1992) The South Tibet Detachment System, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol Soc Am Spec Pap 269:1–41

    Google Scholar 

  • Burg JP, Brunel M, Gapais D, Chen GM, Liu GH (1984) Deformation of leucogranites of the crystalline main central sheet in southern Tibet (China). J Struct Geol 6:535–542

    Article  Google Scholar 

  • Chambers J, Caddick M, Argles T, Horstwood M, Sherlock S, Harris N, Parrish R, Ahmad T (2009) Empirical constraints on extrusion mechanisms from the upper margin of an exhumed high-grade orogenic core, Sutlej valley, NW India. Tectonophysics 477:77–92

    Article  Google Scholar 

  • Chawla HS, Marquer D, Kramers JD, Villa MI, Bussy F (2000) Petrology and age of the Kinnaur Kailash granite: evidences for an Ordovician post-orogenic extension in the High Himalayan Crystalline, Sutlej, India. Earth Sci Frontiers 7. China University of Geosciences Beijing, pp 50–51

  • Dézes PJ, Vannay JC, Steck A, Bussy F, Cosca M (1999) Synorogenic extension: quantitative constraints on the age and displacement of the Zanskar shear zone (northwest Himalaya). Geol Soc Am Bull 111:364–374

    Article  Google Scholar 

  • Divakara Rao V, Radhakrishna T, Srikantia SV (1978) Geochemistry and origin of acidic rocks from Jaspa and Rohtang, Himachal Pradesh. J Geol Soc India 19:563–570

    Google Scholar 

  • Dubey AK (1999) Oblique thrust ramps in the Himalaya: a study based on model experiments. In: Jain AK, Manickavasagam RM (eds) Gondwana Res Group Mem 6:39–49

  • Edwards MA, Harrison TM (1997) When did the roof collapse? Late Miocene north–south extension in the High Himalaya revealed by Th–Pb monazite dating of the Khula Kangri granite. Geology 25:543–546

    Article  Google Scholar 

  • Epard JL, Steck A (2004) The Eastern prolongation of the Zansker Shear Zone (Western Himalaya). Eclogae Geol Helv 97:193–212

    Article  Google Scholar 

  • Frank W, Thoni M, Purtscheller F (1977) Geology and petrology of Kulu-south Lahaul area. Ecologie et Geologie de l’Himalaya. In: Coll. Int. CNRS Himalaya, sciences de la terre CNRS (ed) Paris 268:147–172

  • Godin L, Parrish RR, Brown RL, Hodges KV (2001) Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: insight from U–Pb geochronology and Ar-40/Ar-39 thermochronology. Tectonics 20:729–747

    Article  Google Scholar 

  • Grujic D, Casey M, Davidson C, Hollister LS, Kundig R, Pavlis T, Schmid S (1996) Ductile extrusion of the Higher Himalayan crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260:21–43

    Article  Google Scholar 

  • Grujic D, Hollister LS, Parrish RR (2002) Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth Planet Sci Lett 198:177–191. doi:10.1016/S0012-821X(02)00482-X

    Article  Google Scholar 

  • Harrison TM, Grove M, Lovera OM, Catlos EJ (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. J Geophys Res 103:27017–27032

    Article  Google Scholar 

  • Harrison TM, Grove M, Lovera OM, Catlos EJ, D’Andrea J (1999) The origin of Himalayan anatexis and inverted metamorphism: models and constraints. J Asian Earth Sc 17:755–772

    Article  Google Scholar 

  • Hodges KV, Parrish RR, Housh TB, Lux DR, Burchfiel BC, Royden LH, Chen Z (1992) Simultaneous Miocene extension and shortening in the Himalayan orogen. Science 258:1446–1470

    Article  Google Scholar 

  • Hodges KV, Parrish RR, Searle MP (1996) Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics 15:1264–1291

    Article  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallisation of protolith igneous grains. J Meta Geol 18:423–439

    Article  Google Scholar 

  • Hutton DHW (1997) Syntectonic granites and the principle of effective stress: a general solution to the space problem? In: Bouchez JL, Stephens WE, Hutton DWH (eds) Granite: from melt segregation to emplacement fabrics. Kluwer, Dordrecht, pp 189–197

  • Ishihara S (1979) Lateral variation of magnetic susceptibility of the Japanese granitoids. J Geol Soc Jpn 85:509–523

    Article  Google Scholar 

  • Islam R, Upadhyay R, Ahmed T, Thakur VC, Sinha AK (1999) Pan-African magmatism, and sedimentation in the NW Himalaya. Gondwana Res 2:263–270

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69. doi:10.1016/j.chemgeo.2004.06.017

    Article  Google Scholar 

  • Jayangondaperumal R, Dubey AK, Sen K (2010) Mesoscopic and magnetic fabrics in arcuate igneous bodies: an example from the Mandi-Karsog pluton, Himachal Lesser Himalaya. Geol Mag 147:652–664. doi:10.1017/S0016756810000105

    Google Scholar 

  • Jelinek V (1978) Statistical processing of magnetic susceptibility measured in groups of specimens. Stud Geophys Geod 22:50–62

    Article  Google Scholar 

  • Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 9:T63–T67

    Article  Google Scholar 

  • Kohn MJ (2008) P-T-t data from Central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan sequence. Geol Soc Am Bull 120:259–273

    Article  Google Scholar 

  • Kruhl JH (1996) Prism and basal-plane parallel sub-grain boundaries in quartz: a microstructural geothermobarometer. J Meta Geol 14:581–589

    Article  Google Scholar 

  • Kwatra SK, Singh S, Singh VP, Sharma RK, Rai B, Kishor N (1999) Geochemical and geochronological characteristics of the Early Paleozoic granitoids from Sutlej-Baspa Valleys, Himachal Himalayas. In: Jain AK, Manickavasagam RM (eds) Geodynamics of the NW Himalaya. Gond Res Gp Mem 6:145–158

  • Le Fort P (1996) Evolution of the Himalaya. In: Yin A, Harrison TM (eds) The tectonics of Asia. Cambridge University Press, New York, pp 95–106

    Google Scholar 

  • Mamtani MA, Greiling RO (2005) Granite emplacement and its relation with regional deformation in the Aravalli Mountain Belt (India)—inferences from magnetic fabric. J Struct Geol 27:2008–2029

    Article  Google Scholar 

  • Mamtani MA, Greiling RO (2010) Serrated quartz grain boundaries, temperature and strain rate: testing fractal techniques in a syntectonic granite. In: Spalla I, Marotta AM, Gosso G (eds) Advances in interpretation of geological processes: refinement of multi-scale data and integration in numerical modelling. Geological Society, London, Special Publication, 332:35–48

  • Marquer D, Chawla HS, Challandes N (2000) Pre-alpine high-grade metamorphism in High Himalaya crystalline sequences: evidence from Lower Paleozoic Kinnaur Kailash Granite and surrounding rocks in the Sutlej Valley (Himachal Pradesh, India). Eclo Geol Helv 93:207–220

    Google Scholar 

  • Mehta PK (1977) Rb–Sr geochronology of the Kulu-Mandi belt: its implications for the Himalayan tectogenesis. Geol Raundsch 66:156–175

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin, p 366

    Google Scholar 

  • Payne JL, Barovich KM, Hand M (2006) Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: implications for palaeoproterozoic reconstructions. Precam Res 148:275–291

    Article  Google Scholar 

  • Pêcher A (1991) The contact between the Higher Himalaya crystallines and the Tibetan sedimentary series: miocene large scale dextral shearing. Tectonics 10:587–598

    Article  Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory-zoned zircon: some geochemical and petrological implications. Contrib Mineral Petrol 110:463–472

    Article  Google Scholar 

  • Pueyo EL, Bouchez J-L, Román-Berdiel T, Gleizes G (2005) Are paramagnetic granites free of ferromagnetism? In: Proceeding of the IAGA meeting Toulouse 01323

  • Raposo MIB, Berquó TS (2008) Tectonic fabric revealed by AARM of the proterozoic mafic dike swarm in the Salvador city (Bahia State): São Francisco Craton, NE Brazil. Phys Earth Planet Interiors 167:179–194

    Article  Google Scholar 

  • Rochette P (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J Struct Geol 9:1015–1020

    Article  Google Scholar 

  • Rosenberg CL (2004) Shear zones and magma ascent: a model based on a review of the Tertiary magmatism in the Alps. Tectonics 23:1–21

    Article  Google Scholar 

  • Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite facies zircons: the age of Alpine metamorphism in the Sesia—Lanzo Zone (Western Alps). Earth Planet Sci Lett 167:141–158

    Article  Google Scholar 

  • Sachan HK, Kohn MJ, Saxena A, Corrie SL (2010) The Malari leucogranite, Garhwal Himalaya, northern India: chemistry, age and tectonic implications. Geol Soc Am Bull 122:1865–1876

    Article  Google Scholar 

  • Saint-Blanquat M, Tikoff B (1997) Development of magmatic to solid-state fabrics during syntectonic emplacement of the Mono Creek granite, Sierra Nevada batholith. In: Bouchez JL, Hutton DHW, Stephens E (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 231–252

    Google Scholar 

  • Saint-Blanquat M, Tikoff B, Teyssier C, Vigneresse JL (1998) Transpressional kinematics and magmatic arcs. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental transpressional and transtensional tectonics. Geol Soc Lond Spec Publ 135:327–340

  • Scaillet B, Pêcher A, Rochette P, Champenois M (1995) The Gangotri Granite (Garhwal Himalaya): Laccolith emplacement in an extending collisional belt. J Geophy Res 100:585–607

    Article  Google Scholar 

  • Searle MP, Parrish RR, Hodges KV, Hurford A, Ayers MW, Whitehouse MJ (1997) Shisha Pangma leucogranite, South Tibetan Himalaya: field relations, geochemistry, age, origin and emplacement. J Geol 105:295–317

    Article  Google Scholar 

  • Singh B, Santosh K (2005) Petrogenetic appraisal of Early Paleozoic granitoids of Kinnaur district, Higher Himachal Himalaya, India. Gond Res 8:67–76

    Article  Google Scholar 

  • Steck A, Spring L, Vannay JC, Masson H, Bucher H, Stutz E, Marchand R, Tieche LC (1993) Geological transect across the North-western Himalaya in eastern Ladakh and Lahul (a model for the collision of India and Asia). Eclo Geol Helv 86:219–263

    Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J Struct Geol 24:1861–1884

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London

    Google Scholar 

  • Thöni M (1977) Geology, structural evolution and metamorphic zoning in the Kulu Valley (Himachal Himalayas, India) with special reference to the reversed metamorphism: Mitteilungen der Gesellschaft der Geologie—und Bergbaustudenten in Österreich 24:125–187

  • Tomezolli RN, McDonald WD, Tickyj H (2003) Composite magnetic fabrics and S–C structures in granite gneiss of Cerro de los Viejos, La Pampa province, Argentina. J Struct Geol 5:351–368

    Google Scholar 

  • Valdiya KS (1993) Evidence for Pan African-Cadomian tectonic upheavals in Himalaya. J Palaeontol Soc India 38:51–62

    Google Scholar 

  • Valdiya KS (1995) Proterozoic sedimentation and Pan-African geodynamic development in the Himalaya. Precambr Res 74:35–55

    Article  Google Scholar 

  • Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS: appendix. In: Sylvester PJ (Ed) Laser ablation-ICP-mass spectrometry in the earth sciences: principles and applications. Mineralog Assoc Canada (MAC) Short Course Series, Ottawa, Ontario, Canada 29:239–243

  • Vannay JC, Grasemann B (1998) Inverted metamorphism in the High Himalaya of Himachal Pradesh (NW India): phase equilibria versus thermobarometry. Schweiz Mineral Petrogr Mitt 78:107–132

    Google Scholar 

  • Vannay JC, Grasemann B (2001) Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol Mag 138:253–376

    Article  Google Scholar 

  • Vannay JC, Grasemann B, Rahn M, Frank W, Carter A, Baudraz V, Cosca M (2004) Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23: TC 1014:1–24

    Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404

    Article  Google Scholar 

  • Vernon RH, Johnson SE, Melis EA (2004) Emplacement related microstructures in the margin of a deformed pluton: the San Jose tonalite, Baja California, Mexico. J Struct Geol 26:1867–1884

    Article  Google Scholar 

  • Vigneresse JL (1999) Should felsic magmas be considered as tectonic objects, just like faults or folds? J Struct Geol 21:1125–1130

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr S. S. Thakur for his help during the fieldwork. Prof. Alan Collins and his associates from the School of Earth & Environment Sciences, University of Adelaide, Australia are gratefully acknowledged for carrying out the LA-ICPMS U–Pb geochronology of our samples. However, the authors take full responsibility for the data interpretation. We are grateful to Jean-Louis Vigneresse and an anonymous reviewer for their thorough and constructive reviews. M. A. Mamtani is thanked for his suggestions and editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Sen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, K., Sen, K. & Dubey, A.K. Modification of fabric in pre-Himalayan granitic rocks by post-emplacement ductile deformation: insights from microstructures, AMS, and U–Pb geochronology of the Paleozoic Kinnaur Kailash Granite and associated Cenozoic leucogranites of the South Tibetan Detachment zone, Himachal High Himalaya. Int J Earth Sci (Geol Rundsch) 101, 761–772 (2012). https://doi.org/10.1007/s00531-011-0657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0657-z

Keywords

Navigation