Skip to main content

Advertisement

Log in

Post-collisional melting of crustal sources: constraints from geochronology, petrology and Sr, Nd isotope geochemistry of the Variscan Sichevita and Poniasca granitoid plutons (South Carpathians, Romania)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Sichevita and Poniasca plutons belong to an alignment of granites cutting across the metamorphic basement of the Getic Nappe in the South Carpathians. The present work provides SHRIMP age data for the zircon population from a Poniasca biotite diorite and geochemical analyses (major and trace elements, Sr–Nd isotopes) of representative rock types from the two intrusions grading from biotite diorite to biotite K-feldspar porphyritic monzogranite. U–Pb zircon data yielded 311 ± 2 Ma for the intrusion of the biotite diorite. Granites are mostly high-K leucogranites, and biotite diorites are magnesian, and calcic to calc-alkaline. Sr, and Nd isotope and trace element data (REE, Th, Ta, Cr, Ba and Rb) permit distinguishing five different groups of rocks corresponding to several magma batches: the Poniasca biotite diorite (P1) shows a clear crustal character while the Poniasca granite (P2) is more juvenile. Conversely, Sichevita biotite diorite (S1), and a granite (S2*) are more juvenile than the other Sichevita granites (S2). Geochemical modelling of major elements and REE suggests that fractional crystallization can account for variations within P1 and S1 groups. Dehydration melting of a number of protoliths may be the source of these magma batches. The Variscan basement, a subduction accretion wedge, could correspond to such a heterogeneous source. The intrusion of the Sichevita–Poniasca plutons took place in the final stages of the Variscan orogeny, as is the case for a series of European granites around 310 Ma ago, especially in Bulgaria and in Iberia, no Alleghenian granitoids (late Carboniferous—early Permian times) being known in the Getic nappe. The geodynamical environment of Sichevita–Poniasca was typically post-collisional of the Variscan orogenic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beard JS, Lofgren GE (1991) Dehydration melting and water saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kbar. J Petrol 32:365–402

    Google Scholar 

  • Berza T (1997) A hundred years of tectonic studies in South Carpathians: the state of the art. In: Grubic A, Berza T (eds) Geology of Djerdap Area. Geoinstitut, Belgrade, pp 271–276

    Google Scholar 

  • Birlea L (ed.) (1977) L’importance des minéraux accessoires pour les recherches géologiques et métallogéniques dans les massifs granitoïdes. Annales Université Jean-Bedel Bokassa, 2, Empire Centrafricain

  • Birlea L (1976) Studiul mineralelor accessorii din masivul granitoid de Sichevita (muntii Almajului) (abstract of Doctorate thesis). University of Bucharest, pp 1–24

  • Black LP, Kamo SL (2003) TEMORA 1: a new zircon standard for U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Carrigan C, Mukasa S, Haydoutov I, Kolcheva K (2005) Age of Variscan magmatism from the Balkan sector of the orogen, central Bulgaria. Lithos 82:125–147

    Article  Google Scholar 

  • Carrigan C, Mukasa S, Haydoutov I, Kolcheva K (2006) Neoproterozoic magmatism and Carboniferous high-grade metamorphism in the Sredna Gora Zone, Bulgaria: an extension of the Gondwana-derived Avalonia–Cadomian belt? Precambrian Res 147:404–416

    Article  Google Scholar 

  • Cavazza W, Roure FM, Spakman W, Stampfli GM, Ziegler PE (2004). The TRANSMED Atlas—the Mediterranean region from Crust to Mantle. Springer, Heidelberg, 141 pages + 1 CD-ROM

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (1991) Restite enclaves and the restite model. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 375–381

    Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28: 1111–1138

    Google Scholar 

  • Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of late Palaeozoic tectonothermal activity in the southeastern Bohemian massif, Austria (Moldanubian and Moravo-Silesian zones): 40Ar/39Ar mineral age controls. Tectonophysics 210:135–153

    Article  Google Scholar 

  • Dallmeyer RD, Neubauer F, Fritz H, Mocanu V (1998) Variscan versus Alpine tectonothermal evolution of the southern Carpathian orogen: constraints from 40Ar/39Ar ages. Tectonophysics 290:111–135

    Article  Google Scholar 

  • Davies JH, von Blankenburg F (1995) Slab breakoff: a model of lithospheric detachment and ist test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  • Dias G, Leterrier J, Mendes A, Simoes PP, Bertrand JM (1998) U-Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (northern Portugal). Lithos 45:349–369

    Article  Google Scholar 

  • Didier J, Barbarin B (1991) Enclaves and granite petrology. Development in Petrology 13. Elsevier, Amsterdam, p 625

    Google Scholar 

  • Debon F (1991) Comparative major element chemistry in various “microgranular enclave-plutonic host” pairs. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 293–312

    Google Scholar 

  • Dragusanu C, Tanaka T (1997) 1.57 Ga magmatism in the South Carpathians; implications for the pre-Alpine basement and evolution of the mantle under the European continent. J Geol 107:237–248

    Article  Google Scholar 

  • Duchesne JC, Wilmart E (1997) Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway): a jotunite (hypersthene monzodiorite)-derived A-type granitoids suite. J Petrol 38:337–369

    Article  Google Scholar 

  • Fenner CN (1926) The Katmai magmatic province. J Geol 34:673–772

    Article  Google Scholar 

  • Fernando-Suarez J, Dunning GR, Jenner GA, Gutiérrez-Alonso G (2000) Variscan collisional magmatism and deformation in NW Iberia: constraints from U–Pb geochronology of granitoids. J Geol Soc London 157: 565–576

    Article  Google Scholar 

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of Central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42: 2033–2048

    Article  Google Scholar 

  • Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement—the South Bohemian batholith. J Czech Geol Soc 48:53–54

    Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Helz R (1976) Phase relations of basalt in their melting ranges at PH2O = 5  kb. Part 2. Melt compositions. J Petrol 17:139–193

    Google Scholar 

  • Henk A, von Blankenburg F, Finger F, Schaltegger U, Zulauf G (2000) Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geological Society, London, Special Publication, 179:387–399

  • Holtz F, Johannes W (1991) Genesis of peraluminous granites I. Experimental investigation of melt composition at 3 and 5 kb and various H2O activities. J Petrol 32:935–958

    Google Scholar 

  • Iancu V (1998) Relatii intre granitoide si metamorfite pre-alpine in Carpathii Meridionale (in romanian). Doctorat dissertation Thesis, University of Bucharest, p 206

  • Iancu V, Andar P, Tatu M (1996) The late Variscan Sichevita–Poniasca granitoids: petrochemical polarity and tectonically controlled emplacement of the magma. Inst Geol Rom 69(suppl. n1): 103–106

    Google Scholar 

  • Iancu V, Balintoni I, Sabau G (1988) Variscan tectonic units from the Getic Domain, Bozovici Zone. DS Inst Geol Geofiz 72–73:153–161

    Google Scholar 

  • Iancu V, Berza T, Seghedi, A, Gheuca, I, Hann HP (2005a) Alpine polyphase tectono-metamorphic evolution of the South Carpathians: a new overview. Tectonophysics 410:337–365

    Article  Google Scholar 

  • Iancu V, Berza T, Seghedi A, Maruntiu M (2005b) Palaeozoic rock assemblages incorporated in the South Carpathian Alpine thrust belt (Romania and Serbia): a review. Geol Belg 8:48–68

    Google Scholar 

  • Iancu V, Maruntiu M (1989) Toronita Zone and problems of the Pre-Alpine metamorphic basement of the Getic and Danubian realms. DS Inst Geol Geofiz 71:223–237

    Google Scholar 

  • Iancu V, Maruntiu M, Johan V, Ledru P (1998) High-grade metamorphic rocks in the pre-Alpine nappe stack of the Getic–Supragetic basement (Median Dacides, South Carpathians, Romania). Mineral Petrol 63:173–198

    Article  Google Scholar 

  • Jung S, Hoernes S, Mezger K (2002) Synorogenic melting of mafic lower crust: constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia). Contrib Mineral Petrol 143:551–566

    Google Scholar 

  • Krawczyk CM, Stein E, Choi S, Oettinger G, Schuster K, Götze HJ, Haak V, Oncken O, Prodehl C, Schulze A (2000) Geophysical constraints on exhumation mechanisms of high pressure rocks: the Saxo–Thuringian case between the Franconian line. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geological Society, London, Special Publication, 179:303–322

  • Ledru P, Cocherie A, Iancu V, Maruntiu M (1997) The gneissic units of the Median Dacides (Getic–Supragetic Domain): an exotic segment of the European Variscides. Rom J Mineral 78 (suppl. 1): 48–49 (Abstract volume, 4th National Symposium on Mineralogy, 3–8 October, Iasi)

  • Liégeois JP (1998) Preface—some words on the post-collisional magmatism. Lithos 45:XV–XVII

    Article  Google Scholar 

  • Liégeois JP, Bertrand J, Black R (1987) The subduction- and collision-related Pan-African composite batholith of the Adrar des Iforas (Mali): a review. Geol J 22:185–211

    Article  Google Scholar 

  • Liégeois JP, Navez J, Hertogen J, Black R (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45:1–28

    Article  Google Scholar 

  • Liégeois JP, Latouche L, Boughrara M, Navez J Guiraud M (2003) The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. J Afr Earth Sci 37:161–190

    Article  Google Scholar 

  • Ludwig KR (2000) SQUID 1.00: a user’s manual. Berkeley Geochronol Cent Spec Publ 2:1–19

    Google Scholar 

  • Martin H (1987) Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from Eastern Finland: major and trace element geochemistry. J Petrol 28:921–953

    Google Scholar 

  • Maruntiu M, Iancu V, Alexe V, Stoian M (1996) - Geochemistry of the metamagmatic rocks in the Getic–Supragetic Domain of the South Carpathians. Inst Geol Roman 69:225–228

    Google Scholar 

  • McDermott F, Harris NBW, Hawkesworth CL (1996) Geochemical constraints on crustal anatexis: a case study from the Pan-African Damara granitoids of Namibia. Contrib Mineral Petrol 123:406–423

    Article  Google Scholar 

  • Medaris GJ, Ducea M, Ghent E, Iancu V (2003) Conditions and timing of high-pressure Variscan metamorphism in the South Carpathians, Romania. Lithos 70:141–161

    Article  Google Scholar 

  • Millisenda CC, Liew TC, Hofman AW, Köhler H (1994) Nd isotopic mapping of the Sri Lanka basement: update and additional constraints from Sr isotopes. Precambrian Res 66:95–110

    Article  Google Scholar 

  • Murgoci (1905) Sur l’existence d’une grande nappe de recouvrement dans les Karpathes Méridionales. CR Acad Sci Paris 31 Juillet 1905

  • O’Brien PJ (2000) The fundamental Variscan problem: high-temperature metamorphism at different depths and hig-pressure metamorphism at different temperatures. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geological Society, London, Special Publication, 179, 369–386

  • Peccerillo R, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:489–502

    Article  Google Scholar 

  • Pitcher WS (1987) Granites and yet more granites fourty years on. Geol Rundsch 76:51–79

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–932

    Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calc- alkaline, I-type granitoids. Geology 21:825–828

    Article  Google Scholar 

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid absent conditions. Contrib Mineral Petrol 107:41–59

    Article  Google Scholar 

  • Sabau G, Massone HJ (2003) Relationships among eclogite bodies and host rocks in the Lotru metamorphic suite (South Carpathians, Romania): petrological evidence for multistage tectonic emplacement of eclogites in a medium-pressure terrain. Int Geol Rev 45: 225–262

    Article  Google Scholar 

  • Sandulescu M, Krautner HP, Borcos M, Nastaseanu S, Patrulius D, Stefanescu M, Ghenea C, Lupu M, Savu H, Bercia I, Marinescu F (1978) Geological map of Romania, scale 1:1,000,000

  • Savu H, Tiepac I, Udrescu C (1997) A comparative study of two granitoid series (Poneasca and Buchin) from the Semenic Mountains—Southern Carpathians. Stud Cercet Geol 42:13–28

    Google Scholar 

  • Savu H, Vasiliu C (1969) Contributii la cunoatterea structurii si chimismului masivului granitoid de la Poniasca (Muntii Semenic). DS Inst Geol Buchuresti 54:383–487

    Google Scholar 

  • Seghedi A, Berza T (1994) Duplex interpretation for the structure of the Danubian thrust sheets. Rom J Tect Reg Geol 75:57

    Google Scholar 

  • Schaltegger U, Corfu F (1992). The age and source of Late Hercynian magmatism in the central Alps: evidence from precise U–Pb ages and initial Hf isotopes. Contrib Mineral Petrol 111:329–344

    Article  Google Scholar 

  • Stan N, Intorsureanu I, Tiepac I, Udrescu C (1992) Petrology of the Sichevita granitoids (South Carpathians). Rom J Petrol 75:1–15

    Google Scholar 

  • Stan N, Tiepac I (1994) Characterization of S-I type granitoids from the Banat area, South Carpathians. Rom J Petrol 76:33–39

    Google Scholar 

  • Stefanescu M (ed) (1988) Geological cross-sections at scale 1:200,000. Inst Geol Geofiz, Buchuresti

  • Taylor SR, McLennan, SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

  • Vander Auwera J, Bologne G, Roelandts I, Duchesne JC (1998) Inductively coupled plasma-mass spectrometry (ICP-MS) analysis of silicate rocks and minerals. Geol Belg 1:49–53

    Google Scholar 

  • Vaskovic N, Christofides G, Koroneos A, Sreckovic-Batocanin D, Milovanovic D (2004) Mineralogy and petrology of the Brnjica granitoids (Eastern Serbia). Bull Geol Soc Greece 36:615–624

    Google Scholar 

  • Vaskovic N, Matovic V (1997) The Hercynian granitoids of Djerdap (North–East Serbia), International Symposium, Geology of the Danube Gorges, Donj Milanovac, pp 129–140

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and compositional effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsl 19:1–23

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb Geochronology by ion microprobe. In: McKibben MA, Shanks III WC, Ridley WI (eds) Applications of Microanalytical Techniques to Understanding Mineralising Processes. Rev Econ Geol 7:1–35

Download references

Acknowledgments

This study is part of a research programme supported by the European Community (CIPA CT93 0237- DG12 HSMU) and the Belgian CGRI. M.T. was a post-doctorate fellow of the Belgian FNRS at the University of Liège. G. Bologne has helped with the chemical analyses. B. Bonin has kindly provided judicious comments. S. Jung and F. Neubauer are greatly thanked for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Clair Duchesne.

Appendix: Methods

Appendix: Methods

Zircon grains were hand selected and mounted in epoxy resin, together with chips of the TEMORA (Middledale Gabbroic Diorite, New South Wales, Australia, age= 417 Ma, Black et al. 2003) and 91500 (Geostandard zircon, age= 1,065 Ma, Wiedenbeck et al. 1995) reference zircons. The grains were sectioned approximately in half and polished. Each analysis consisted of five scans through the mass range; the spot diameter was about 18 μm and the primary beam intensity about 4 nA. The data were reduced in a manner similar to that described by Williams (1998) and references therein), using the SQUID Excel Macro of Ludwig (2000). The Pb/U ratios were normalised relative to a value of 0.0668 for the 206Pb/238U ratio of the TEMORA zircon, equivalent to an age of 416.75 Ma (Black and Kamo 2003). Uncertainties given for individual analyses (ratios and ages) in Table 1 are at the one σ level, whereas uncertainties in calculated concordia ages are reported at the 2σ level.

Whole-rock analyses were performed by XRF on an ARL 9400 XP spectrometer. The major elements were analysed on lithium tetra- and metaborate glass discs (FLUORE-X65®), with matrix corrections following the Traill-Lachance algorithm. Trace elements (Sr, Rb, Nb, Ni, Zn, and Cu) were measured on pressed pellets and corrected for matrix effects by Compton peak monitoring.

Selected samples were analysed for REE, Y, U, Th, Zr, Hf, Nb, Ba, Ta and Ga by ICP-MS on a VG Elemental Plasma Quad PQ2 after alkali fusion, following the method described in Vander Auwera et al. (1998).

Sr and Nd isotopic compositions were made at the Université Libre de Bruxelles on a Micromass GV Sector 54 multicollector mass spectrometer. The average 87Sr/86Sr ratio of the NBS SRM987 standard and 143Nd/144Nd ratio of the Rennes Nd standard during the period of analyses were 0.710271 ± 10 (2σm on 8 measurements) and 0.511971 ± 9 (on 12 measurements), respectively. Sample ratios have been standardised to a value of 0.710250 for NBS987 and to 0.511963 for the Merck standard (corresponding to a La Jolla value of 0.511858).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duchesne, JC., Liègeois, JP., Iancu, V. et al. Post-collisional melting of crustal sources: constraints from geochronology, petrology and Sr, Nd isotope geochemistry of the Variscan Sichevita and Poniasca granitoid plutons (South Carpathians, Romania). Int J Earth Sci (Geol Rundsch) 97, 705–723 (2008). https://doi.org/10.1007/s00531-007-0185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0185-z

Keywords

Navigation