Skip to main content
Log in

Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations

Die variszischen granitoide mitteleuropas: Typologie, potentielle quellen und tektonothermische Zusammenhänge

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

During the Variscan orogenic cycle, central Europe was intruded by numerous granitoid plutons. Typological and age relationships show that the characteristics of the granitoid magmatism changed during the course of the Variscan orogeny. Five genetic groups of granitoids may be distinguished:

  1. 1.

    Late Devonian to early Carboniferous “Cordilleras” I-type granitoids (ca. 370-340 Ma): These early Variscan granitoids are mainly tonalites and granodiorites. They often have hornblende and occur in association with diorites and gabbros. They form plutonic massifs in the Saxothuringian unit, in Central Bohemia and the intra-Alpine Variscides. In terms of existing models, they can be interpreted as volcanic arc granites, being related to the subduction of early Variscan oceans. Models involving mantle sources and AFC may be feasible.

  2. 2.

    Early Carboniferous, deformed S-type granite/migmatite associations (ca. 340 Ma): These occur in the footwall of a thick thrust in Southern Bohemia (Gföhl nappe) and seem to represent a phase of water-present, syn-collisional crustal melting related to nappe stacking.

  3. 3.

    Late Visean and early Namurian S-type and high-K, I-type granitoids (ca. 340-310 Ma): These granitoids are mainly granitic in composition and particularly abundant along the central axis of the orogen (Moldanubian unit). This zone experienced a high heat flow at this time, probably as a consequence of post-collisional extension and magmatic underplating. Most of group 3 granitoids formed through high-T fluid-absent melting in the lower crust. Enriched mantle melts interacted with some crustal magmas on a local scale to form durbachites. Partial melting events in the middle crust produced a number of high-T/low-P, S- and I-type diatexites and some S-type granite magmas.

  4. 4.

    Post-collisional, epizonal I-type granodiorites and tonalites (ca. 310-290 Ma): These plutons can be found throughout the Central European Variscides. However, most of them occur in the Alps (near the southern flank of the orogen). Such late I-type plutons could be related to renewed subduction along the southern fold belt flank, and/or to extensional decompression melting near the crust/mantle boundary. Post-collisional mantle or slab melting may have occurred in connection with remnant subduction zones below the orogen undergoing thermal relaxation and dehydration.

  5. 5.

    Late Carboniferous to Permian leucogranites (ca. 300-250 Ma): Many of these rocks are similar to sub-alkaline A-type granites. Potential sources for this final stage of plutonism could have been melt-depleted lower crust or lithospheric mantle.

Zusammenfassung

Im Verlauf der variszischen Orogenese intrudierten im mitteleuropäischen Raum große Massen von Granitoiden. Eine Bewertung geochronologischer and granittypologischer Daten zeigt, daß sich die Magmencharakteristik mit der Zeit verändert hat. Fünf Hauptgruppen von Granitoiden können unterschieden werden:

  1. 1.

    I-Typ Granitoide des sädten Devon and fruhen Karbon (ca. 370-340 Ma): Es handelt sich dabei durchwegs um I-Typ Tonalite and Granodiorite, welche häufig Hornblende fühen. Typisch für these Plutone ist die Präsenz gabbroischer oder dioritischer Endglieder. Eine Magmenentstehung aus Mantelquellen mit Modifikation durch AFC und eine genetische Verbindung zu frühvariszischen Subduktionszonen ist denkbar.

  2. 2.

    Syntektonische S-Typ Granite and Migmatite (ca. 340 Ma): Große Massen solcher Granitoide treten im Deckenstapel der südlichen Böhmischen Masse auf. Sie repräsentieren wassergesättigte, syn-kollisionale Krustenschmelzen, die sich in der Nähe von tektonischen Überschiebungsbahnen gebildet haben.

  3. 3.

    S-Typ and kalireiche L-Typ Granitoide des spdten Vise and fruhen Namur (ca. 340-310 Ma): Diese Plutone haben in der Regel granitische Zusammensetzung und intrudierten vornehmlich in der moldanubischen Zentralzone des Orogens. Die dortige kontinentale Kruste war zu dieser Zeit einem extrem hohen Wärmefluß ausgesetzt, der vermutlich durch postkollisionale Extension mit rascher Krustenhebung und magmatischem „underplating” verursacht wurde. Die meisten dieser Granite bildeten sich durch Dehydratationsschmelzen der Unterkruste aus Paragneisen und eventuell auch intermediären kaliumreichen Orthogneisen. Einige wenige Plutone zeigen Interaktionen mit mafischen Magmen, die aus einem angereicherten Lithosphärenmantel stammen (Durbachite). Schmelzprozesse in der mittleren Kruste führten weiträumig zur Bildung von Migmatiten mit grßgen Anteilen an S-Typ and I-Typ Diatexiten.

  4. 4.

    Postkollisionale, epizonale I-Typ Granodiorite and Tonalite (ca. 310-290 Ma): Die Hauptverbreitung dieser Plutone liegt in den Alpen. Eine genetische Verbindung zu einer spätvariszischen Subduktionszone am Variszikums-Siidrand erscheint möglich. Andererseits könnte auch die bloße Reaktivierung and Dehydratation von alten (frühvariszischen) Subduktionszonen unter dem Orogen die Produktion entsprechender I-Typ Magmen bewirkt haben, ebenso wie ein postkollisionales Druckentlastungsschmelzen von I-Typ Quellen im Bereich der Krusten-Mantel Grenze ohne Subduktionzusammenhang.

  5. 5.

    Leukogranite des sädten Karbon and Perm (ca. 300-250 Ma): Viele dieser Plutone zeigen Eigenschaften von A-Typ Graniten. Die entsprechenden Magmen sind vermutlich durch Schmelzprozesse in einer restitischen Unterkruste oder im lithosphärischen Mantel entstanden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson TA (1975) Carboniferous subduction complex in the Harz Mountains, Germany. Geol Soc Am Bull 86: 77–82

    Google Scholar 

  • Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear-zone between the Appalachians and the Urals. Geol Soc Am Bull 88: 1305–1320

    Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362: 144–146

    Google Scholar 

  • Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany. Geol Rundsch 80: 669–690

    Google Scholar 

  • Blümel P, Schreyer W (1976) Progressive regional low-pressure metamorphism in Moldanubian metapelites of the northern Bavarian Forest, Germany. Krystallinikum 12: 7–30

    Google Scholar 

  • Bonin B (1992) The role of crust in the development of A-type alkali-feldspar granites in within-plate bimodal alkaline magmatism. Ind Geol Assoc Bull 25: 11–27

    Google Scholar 

  • Bonin B, Brdndlein P, Bussy F, Desmons J, Eggenberger U, Finger F, Graf K, Marro C, Mercolli I, Oberhansli R, von Quadt A, von Raumer J, Schaltegger U, Steyrer H P, Visona D, Vivier G (1993) Late Variscan magmatic evolution of the Alpine basement. In:von Raumer JF, Neubauer F (eds) The pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York Tokyo, pp171–202

    Google Scholar 

  • Breiter K, Seibel W (1995) Granitoids in the Rozvadov Pluton Southern Bohemia and Oberpfalz. Geol Rundsch 84: 506–519

    Google Scholar 

  • Broska I, Gerdes A, Haunschmid B, Schindlmayr AO, Finger F (1995) Magma temperatures in the Southern Bohemian Batholith estimated on the basis of zircon solubility. Terra Nova 7 [Suppl 1]: 143

    Google Scholar 

  • Brown GC (1981) Space and time in granite plutonism. Phil Trans Roy Soc Lond A301: 321–336

    Google Scholar 

  • Brown GC, Thorpe RS, Webb PC (1984) The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J Geol Soc Lond 141: 413–426

    Google Scholar 

  • Büchi HJ (1994) Der variskische Magmatismus in der östlichen Bernina (Graubunden, Schweiz). Schweiz Mineral Petrograph Mitt 74: 361–364

    Google Scholar 

  • Büttner S, Kruhl JH (1997) The evolution of a late-Variscan high-T/low-P region: the south-eastern margin of the Bohemian Massif. Geol Rundsch 86: 21–38

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8: 173–174

    Google Scholar 

  • Choubert G, Faure-Muret A (1980) Atlas géologique du monde feuille 9 (scale 1 10 000 000). Int Geol Congr Paris

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86: 287–306

    Google Scholar 

  • Cliff RA (1981) Pre-Alpine history of the Pennine zone in the Tauern window Austria: U-Pb and Rb-Sr geochronology. Contrib Mineral Petrol 77: 101–104

    Google Scholar 

  • Collins WJ, Beams SD, Chappell BW, White AJR (1982) Nature and origin of A-type granites with particular reference to south-eastern Australia. Contrib Mineral Petrol 80: 189–200

    Google Scholar 

  • Conrad WK, Nicholls IA, Wall VJ (1988) Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kbar: evidence for the origin of silicic magmas in the Taupo Volcanic Zone New Zealand and other occurrences. J Petrol 29: 765–803

    Google Scholar 

  • DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291: 193–196

    Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26: 115–134

    Google Scholar 

  • Edel JB, Weber K (1995) Cadomian terranes, wrench faulting and thrusting in the central European Variscides: geophysical and geological evidence. Geol Rundsch 84: 412–432

    Google Scholar 

  • Eichhorn R, Schdrer U, Jagoutz E, Höll R (1993) Die Scheelit-Lagerstatte Felbertal - das Alter der Vererzung und der metamorphen Uberpragungen. Ber Dtsch Mineral Ges 5/1: 122

    Google Scholar 

  • Emmermann R (1977) A petrogenetic model for the origin and evolution of the Hercynian granite series of the Schwarzwald. N Jb Mineral Abh 128: 219–253

    Google Scholar 

  • England P, Thompson AB (1984) Pressure-temperature-time paths of regional metamorphism 1. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25: 894–928

    Google Scholar 

  • Finger F (1986) Die synorogenen Granitoide und Gneise des Moldanubikums im Gebiet der Donauschlingen bei Obermuhl (Oberbsterreich). Jb Geol Bundesanst 128: 383–402

    Google Scholar 

  • Finger F, Steyrer HP (1988) Granite-types in the Hohe Tauern (Eastern Alps Austria) - some aspects on their correlation to Variscan plate tectonic processes. Geodinam Acta 2: 75–87

    Google Scholar 

  • Finger F, Steyrer HP (1990) I-type granitoids as indicators of a late-Paleozoic convergent ocean-continent margin along the southern flank of the Central European Variscan orogen. Geology 18: 1207–1210

    Google Scholar 

  • Finger F, Steyrer H P (1991) Comments and replies on “I-type granitoids as indicators of a late Paleozoic convergent ocean-continent margin along the southern flank of the central Variscan orogen”. Geology 20: 1245–1248

    Google Scholar 

  • Finger F, von Quadt A (1993) Genauere U/Pb Alter fur Granitgneise durch sorgfaltige Zirkonselektion unter dem Durchlichtmikroskop - Der Knorrkogelgneis der Hohen Tauern als Beispiel. Ber Deutsch Mineral Ges 5/1: 118

    Google Scholar 

  • Finger F, Clemens JD (1995) Migmatization and “secondary” granitic magmas: effect of emplacement and crystallization of “primary” granitoids in Southern Bohemia, Austria. Contrib Mineral Petrol 120: 311–326

    Google Scholar 

  • Finger F, Steyrer HP (1995) A tectonic model for the eastern Variscides: indications from a chemical study of amphibolites in the south-eastern Bohemian Massif. Geol Carpath 46: 137–150

    Google Scholar 

  • Finger F, Kraiger H, Steyrer HP (1985) Zur Geochemie des Kl-Gneises der Scheelitlagerstatte Felbertal (Pinzgau/Salzburg) - ein Vorbericht. Karinthin 92: 225–235

    Google Scholar 

  • Finger F Frasl G, Haunschmid B, Leaner H, von Quadt A, Schermaier A, Schindlmayr AO, Steyrer HP (1993) The Zentralgneise of the Tauern window (Eastern Alps): insight into an intra-Alpine Variscan batholith. In:von Raumer JF, Neubauer F (eds) The pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 375–392

    Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230: 67–87

    Google Scholar 

  • Frasl G, Finger F (1988) The “Cetic Massif” below the Eastern Alps - characterized by its granitoids. Schweiz Mineral Petrograph Mitt 68: 433–439

    Google Scholar 

  • Frasl G, Finger F (1991) Geologisch-petrographische Exkursion in den osterreichischen Teil des Sudbohmischen Batholiths. Eur J Mineral 3/2: 23–40

    Google Scholar 

  • Friedl G (1997) U/Pb-Datierungen an Zirkonen und Monaziten aus Gesteinen vom österreichischen Anteil der Bohmischen Masse. Thesis, University of Salzburg, pp 242

  • Friedl G, Frasl G, von Quadt A, Finger F (1992) Neue U/Pb Altersdaten aus der sudlichen Bohmischen Masse. Frankfurter Geowiss Arb A11: 217

    Google Scholar 

  • Friedl G, von Quadt A, Ochsner A, Finger F (1993) Timing of the Variscan orogeny in the Southern Bohemian Massif (NE-Austria) deduced from new U-Pb zircon and monazite dating. Terra Abstr 5/1: 235–236

    Google Scholar 

  • Friedl G, von Quadt A, Finger F (1996) Timing der Intrusionstdtigkeit im Sudbohmischen Batholith. In:Amann G, Handler R, Kurz W Steyrer HP (eds) 6 Symposium Tektonik -Strukturgeologie - Kristallingeologie, Salzburg 1996. Extended Abstracts, pp 127-130

  • Frisch W Neubauer F (1989) Pre-Alpine terranes and tectonic zoning in the Eastern Alps. Geol Soc Am Spec Pap 230: 91–100

    Google Scholar 

  • Gerdes A (1997) Geochemische and thermische Modelle zur Frage der spätorogenen Granitgenese am Beispiel des Sudbohmischen Batholiths: Basaltisches Underplating oder Krustenstapelung. Thesis, University of Göttingen, pp 113

  • Gerdes A, Worner G, Finger F (1995) Quellen und Prozesse der Genese des Sudbohmischen Batholiths. Terra Nova 95/8: 97

    Google Scholar 

  • Harris NBW Pearce JA, Tindle AG (1984) Geochemical characteristics of collision-zone magmatism. In:Ries AC, Coward MP (eds) Collision tectonics. Geol Soc Lond Spec Pub 19: 67–81

  • Haunschmid B (1989) Das Granitgebiet um Plochwald zwischen Sandl und Windhaag im nordöstlichen Oberösterreich mit besonderer Berucksichtigung des dortigen Plochwalder Granit-Typs und des Pseudokinzigits. Thesis, University of Salzburg, pp 168

  • Haunschmid B (1993) Zentralgneisgenerationen im östlichen Tauernfenster - Geologie, Petrographie, Zirkontypologie, Geochemie. Thesis, University of Salzburg, pp 159

  • Haunschmid B, Finger F (1994) Der Quarzmonzodiorit von Sarleinsbach eine Kumulatvariante des Weinsberger Granits. Mitt Österr Mineral Gesell 139: 310–312

    Google Scholar 

  • Henes-Klaiber U (1989) Der Odenwald: Hinweise auf einen variszischen ArcMagmatismus? Beih Eur Jb Mineral 1: 166

    Google Scholar 

  • Henes-Klaiber U (1992) Zur Geochemie der variszischen Granitoide des Bergsträsser Odenwalds. Thesis, University of Karlsruhe, pp 264

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98: 455–489

    Google Scholar 

  • Holl A, Altherr R (1987) Hercynian I-type granitoids of northern Vosges: documents of increasing arc maturity. Terra Cognita 7: 174

    Google Scholar 

  • Holub FV (1977) Petrology of inclusions as a key to petrogenesis of the durbachitic rocks from Czechoslovakia. Tschermaks Mineral Petrogr Mitt 24: 133–150

    Google Scholar 

  • Holub FV, Rossi P, Cocherie A (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Modanubian-Barrandian boundary. CR Acad Sci Paris 325: 19–26

    Google Scholar 

  • Janousek V, Rogers G, Bowes DR (1995) Sr-Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84: 520–534

    Google Scholar 

  • Kirsch H, Koser B, Lippolt HJ (1988) Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW-Germany) evidenced by Ar40/Ar39 and single zircon Pb207/Pb209 measurements. Geol Rundsch 77: 693–711

    Google Scholar 

  • Knop E, Biittner S, Haunschmid B, Finger F, Mirwald PW (1995) P-T conditions of Variscan metamorphism and migmatization in the Sauwald, southern Bohemian Massif. Terra Nova 7/1: 316

    Google Scholar 

  • Kosler J, McFarrow CM (1994) Mid-late Devonian arc-type magmatism in the Bohemian Massif: Sr and Nd isotope and trace element evidence from the Stare Sedlo and Mirotice Gneiss Complexes, Czech Republic. J Czech Geol Soc 39: 56–58

    Google Scholar 

  • Kosler J, Aftalion M, Bowes DR (1993) Mid-late Devonian plutonic activity in the Bohemian Massif: U-Pb zircon isotopic evidence from the Stare Sedlo and Mirotice gneiss complex, Czech Republic. N Jb Mineral Abh 9: 417–431

    Google Scholar 

  • Kraus G (1962) Gefuge, Kristallgrößen and Genese des Kristallgranits 1 im vorderen Bayrischen Wald. N Jb Mineral Abh 97: 357–434

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68: 277–279

    Google Scholar 

  • Kröner A, Hegner E, Hammer J, Haase G, Bielicki K-H, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics of Lusitian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundsch 83: 357–376

    Google Scholar 

  • Langer C, Hegner E, Altherr R, Satir M, Henes-Kunst F (1995) Carboniferous granitoids from the Odenwald, the Schwarzwald and the Vosges - constraints on magma sources. Terra Nostra 95/8: 114

    Google Scholar 

  • Linner M (1992) Metamorphose der Paragneise in der Monotonen Serie (SE Moldanubikum). Thesis, University of Vienna

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98: 129–138

    Google Scholar 

  • Liew TC, Finger F, Hdck V (1989) The Moldanubian granitoids of Austria: chemical and isotopic studies bearing on their environmental setting. Chem Geol 76: 41–55

    Google Scholar 

  • Lorenc MW (1994) Rola magm zasadowych w ewolucji intruzji granitoidowych (studium porownawcze wybranych masywow Hercynskich). Geol Sudetica 28: 3–130

    Google Scholar 

  • Matejka D, Klecka M (1992) Petrogenese und geodynamische Stellung des Moldanubischen Batholiths, Böhmische Masse. Rundgesprdch 8: 49

    Google Scholar 

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan Belt of Europe. Tectonophysics 126: 329–374

    Google Scholar 

  • Mehnert KR (1968) Migmatites and the origin of granitic rocks. Elsevier, New York, pp 393

    Google Scholar 

  • Neubauer F (1991) Comment on “I-type granitoids as indicators of a late-Paleozoic convergent ocean-continent margin along the southern flank of the Central European Variscan orogen”. Geology 19: 1246

    Google Scholar 

  • Neubauer F (1994) Kontinentkollision in den Ostalpen. Geowissensch 12: 136–140

    Google Scholar 

  • Neugebauer J (1988) The Variscan plate tectonic evolution: an improved “Iapetus model” Schweiz Mineral Petrogr Mitt 68; 313–333

    Google Scholar 

  • Nicolas A (1972) Was the Hercynian orogenic belt of Europe of the Andean type? Nature 236:221–223

    Google Scholar 

  • O'Brien PJ, Carswell DA (1993) Tectonometamorphic evolution of the Bohemian Massif: evidence from high pressure metamorphic rocks. Geol Rundsch 82: 531–555

    Google Scholar 

  • Patiño-Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107: 202–218

    Google Scholar 

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121: 227–244

    Google Scholar 

  • Pearce JA, Harris NBW Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956–983

    Google Scholar 

  • Petrik I, Broska I, Uher P (1994) Evolution of the Western Carpathian granite magmatism: age source rock, geotectonic setting and relation to the Variscan structure. Geol Carpath 45: 283–29

    Google Scholar 

  • Pin C (1990) Variscan oceans, ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177: 215–227

    Google Scholar 

  • Pin C, Puziewicz J, Duthou JL (1989) Ages and origins of a composite granite massif in the Variscan belt: a Rb-Sr study of the Strzegom-Sobotka Massif, W Sudetes (Poland). N Jb Mineral Abh 160: 71–82

    Google Scholar 

  • Pitcher WS (1983) Granite types and tectonic environment. In:Hsu K (ed) Mountain building processes. Academic Press, London, pp 19–40

    Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21: 825–828

    Google Scholar 

  • Schaltegger U (1990) The Central Aar granite: highly differentiated calc-alkaline magmatism in the Aar Massif (Central Alps, Switzerland). Eur J Mineral 2: 254–259

    Google Scholar 

  • Schaltegger U (1994) Unravelling the pre-Mesozoic history of Aar and Gotthard massifs (Central Alps) by isotopic dating - a review. Schweiz Mineral Petrogr Mitt 74: 41–51

    Google Scholar 

  • Schaltegger U (1995) High-resolution chronometry of late Variscan extensional magmatism and basin formation: examples from the Vosges, Black Forest and the Alpine basement. Terra Nostra 7/95: 109–111

    Google Scholar 

  • Schaltegger U, Corfu F (1992) The age and source for late Hercynian magmatism in the Central Alps: evidence from precise U-Pb ages and initial Hf isotopes. Contrib Mineral Petrol 111: 329–344

    Google Scholar 

  • Schaltegger U, Corfu F (1995) Late Variscan “Basin and Range” magmatism and tectonics in the Central Alps: evidence from U-Pb geochronology. Geodinam Acta 8: 82–98

    Google Scholar 

  • Schaltegger U, Gnos E, Kiipfer T, Labhart TP (1991) Geochemistry and tectonic significance of late Hercynian potassic and ultrapotassic magmatism in the Aar Massif (Central Alps). Schweiz Mineral Petrogr Mitt 71: 391–403

    Google Scholar 

  • Scharbert S (1987) Rb-Sr Untersuchungen granitoider Gesteine des Moldanubikums in Osterreich. Mitt Osterr Mineral Gesell 132: 21–37

    Google Scholar 

  • Schermaier A (1991) Geologisch-petrographische Untersuchungen zur praalpidischen Entwicklung des Tauernfensters am Ostrand des Venedigermassivs (Hohe Tauern). Jb Geol Bundesanst 135: 746–750

    Google Scholar 

  • Schermaier A (1993) Gliederung der Zentralgneise im mittleren and westlichen Tauernfenster. Geologie — Petrographie — Zirkontypologie — Geochemie. Thesis, University of Salzburg, pp 174

  • Schermaier A, Haunschmid B, Finger F (1997) Distribution of I- and S-type granites in the eastern Alps: a possible clue to unravel pre-Alpine basement structures. Tectonophysics 272:315–333

    Google Scholar 

  • Scotese CR (1984) Paleozoic paleomagnetism and the assembly of Pangea. In:van der Voo R, Scotese CR, Bonhommet N (eds) Plate reconstruction from Paleozoic paleomagnetism. Am Geophys Union Geodynam Srs 12: 1–10

  • Siebel W (1994) Geochemical and isotopic (Sr Nd) investigations of NE Bavarian granitoids: a comparison between the Fichtelgebirge and the northern Oberpfalz. Rundgesprach 10: 22–24

    Google Scholar 

  • Siebel W (1995a) Constraints on Variscan granite emplacement in north-eastern Bavaria, Germany: further clues from a petrogenetic study of the Mitterteich granite. Geol Rundsch 84: 384–398

    Google Scholar 

  • Siebel W (1995b) Anticorrelated Rb-Sr and K-Ar age discordances: Leuchtenberg granite, NE Bavaria, Germany. Contrib Mineral Petrol 120: 197–211

    Google Scholar 

  • Silver LT, Chappell BW (1988) The Peninsular Ranges Batholith: an insight into the evolution of the Cordilleran batholiths of southwestern North America. Trans Roy Soc Edinburgh Earth Sci 79: 105–121

    Google Scholar 

  • Spillmann P, Buchi H (1993) The pre-Alpine basement of the Lower Austroalpine nappes in the Bernina Massif (Grisons Switzerland, Valtellina Italy). In:von Raumer JF, Neubauer F (eds) The Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York Tokyo, pp 457–468

    Google Scholar 

  • Stemprok M (1994) The Krusne Hory (Erzgebirge) granite batholith. Mitt Osterr Mineral Gesell 139: 374–376

    Google Scholar 

  • Thiele O (1962) Neue geologische Ergebnisse aus dem Sauwald (OÖ). Verhandl Geol Bundesanst 1962: 117–129

    Google Scholar 

  • Thompson RN, Morrison MA, Hendry GL, Parry SJ (1984) An assessment of the relative roles of crust and mantle magma genesis: an elemental approach. Phil Trans Roy Soc Lond A310:549–590

    Google Scholar 

  • Thöni M (1991) Neue Rb/Sr-Daten an Mineralien und Gesteinen des Leopold von BuchDenkmales und am Tonalit von Schaitten. Mitt Gesell Geol Bergbaust Österr 37: 157–162

    Google Scholar 

  • Todt W (1976) Zirkon-U/Pb-Alter des Malsburg-Granits, Süd-Schwarzwald. N Jb Mineral Monat 12: 532–544

    Google Scholar 

  • Troll G (1964) Geologische Übersichtskarte des Bayerischen Waldes l: 100000. Geologica Bavarica 58 (enclosure)

  • Uher P, Pushkarev Y (1994) Granitic pebbles of the Cretaceous flysch of the Pieniny klippen belt, Western Carpathians. Geol Carpath 45: 375–378

    Google Scholar 

  • Vavra G, Hansen BT (1991) Cathodoluminescence studies and U/Pb dating of zircons in pre-Mesozoic gneisses of the Tauern Window: implications for the Penninic basement evolution. Geol Rundsch 80: 703–715

    Google Scholar 

  • Vellmer C (1992) Stoffbestand and Petrogenese von Granuliten and granitischen Gesteinen der südlichen Böhmischen Masse in Niederösterreich. Thesis, University of Göttingen, pp 111

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98: 257–276

    Google Scholar 

  • Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes, part l. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117: 375–393

    Google Scholar 

  • Volker F, Altherr R (1987) Lower Carboniferous calc-alkaline volcanics in the northern Vosges: evidence for a destructive continental margin. Terra Cognita 7: 174

    Google Scholar 

  • von Blanckenburg F, Davies JH (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14: 120–131

    Google Scholar 

  • von Quadt A, Finger F (1991) Geochronologische Untersuchungen im osterreichischen Teil des Sudbohmischen Batholiths. U-Pb Datierungen an Zirkonen, Monaziten und Xenotimen des Weinsberger Granits. Eur J Mineral 3 (Beiheft l): 281

    Google Scholar 

  • vonQuadt A, Griinenfelder M, Biichi H (1994) U-Pb zircon ages from igneous rocks of the Bernina nappe system (Grisons, Switzerland). Schweiz Mineral Petrogr Mitt 74: 373–382

    Google Scholar 

  • Wenzel T, Mercolli I, Oberhansli R (1991) The plutonic rocks of the Meißen Massif (Germany): evidence for open and closed system fractionation processes. Schweiz Mineral Petrogr Mitt 71: 371–390

    Google Scholar 

  • White AJR, Chappell BW (1983) Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In:Roddick JA (ed) Circum Pacific plutonic terranes. Geol Soc Am Mem 159: 21–34

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finger, F., Roberts, M.P., Haunschmid, B. et al. Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineralogy and Petrology 61, 67–96 (1997). https://doi.org/10.1007/BF01172478

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172478

Keywords

Navigation