Skip to main content

Advertisement

Log in

Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Zafarghand Igneous Complex is composed of granite, granodiorite, diorite, and gabbro that contain many mafic microgranular enclaves. This complex was emplaced during the late Oligocene (24.6 Ma) to form part of the Urumieh–Dokhtar magmatic arc of Central Iran. The enclaves have spheroidal to elongated/lenticular shapes and are quenched mafic melts in felsic host magma as evidenced by fine-grained sinuous margins and (or) locally transitional and diffuse contacts with the host rocks, as well as having disequilibrium textures. These textures including oscillatory zoning with resorption surfaces on plagioclase, feldspar megacrysts with poikilitic and anti-rapakivi textures, mafic clots, acicular apatites, and small lath-shaped plagioclase in larger plagioclase crystals all indicate that the enclaves crystallized from mafic magma that was injected into and mixing/mingling with the host felsic magma. The studied rocks have calc-alkaline, metaluminous compositions, with an arc affinity. They are enriched in large ion lithophile elements, light rare-earth elements, and depleted in high field strength elements with significant negative Eu anomalies. The Sr–Nd isotopic data for all of the samples are similar and display ISr = 0.705123–0.705950 and εNd (24.6 Ma) = − 1.04–1.03 with TDM ~ 0.9–1.1 Ga. The host granites and enclaves are of mixed/mingled origin and most probably formed by the interaction between the juvenile lower crust with a basaltic composition and old lower or middle continental crust as a major component and lithospheric mantle as a minor component; this was followed by fractional crystallization and possibly minor crustal assimilation. The source seems to be comprised of about 90–80% of the basaltic magma and about 10–20% of lower/middle-crust-derived magma. Geochemical characteristics indicate that the intrusion of these rocks from a subduction zone setting below the Central Iran micro-continent was related to an active continental margin, although was transitional to a transtensional setting possibly due oblique convergence to slab rollback or break-off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419

    Article  Google Scholar 

  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monié P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148:692–725

    Article  Google Scholar 

  • Ahmadian J, Sarjoughian F, Lentz D, Esna-Ashari A, Murata M, Ozawa H (2016) Eocene K-rich adakitic rocks in the Central Iran: implications for evaluating its Cu–Au–Mo metallogenic potential. Ore Geol Rev 72:323–342

    Article  Google Scholar 

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran; new data and interpretations. Tectonophysics 229:211–238

    Article  Google Scholar 

  • Alavi M, Mahdavi MA (1994) Stratigraphy and structure of the Nahavand region in western Iran and their implications for the Zagros tectonics. Geol Mag 131:43–47

    Article  Google Scholar 

  • Ali SA, Buckman S, Aswad KJ, Jones BG, Ismail SA, Nutman AP (2013) The tectonic evolution of a Neo-Tethyan (Eocene–Oligocene) island-arc (Walash and Naopurdan groups) in the Kurdistan region of the Northeast Iraqi Zagros Suture Zone. Isl Arc 22:104–125

    Article  Google Scholar 

  • Allen MB (1991) Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: mineral, chemical, and isotopic evidence. Am Miner 76:574–588

    Google Scholar 

  • Allen MB (2009) Discussion on the Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan zone, west Iran: a marker of the end of collision in the Zagros orogen. J Geol Soc Lond 166:981–982

    Article  Google Scholar 

  • Allen MB, Armstrong HA (2008) Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265:52–58

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Ao S, Xiao W, Khalatbari Jafari M, Talebian M, Chen L, Wan B, Ji W, Zhang Z (2016) U–Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): from continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo-Tethys. Gondwana Res 31:305–318

    Article  Google Scholar 

  • Asadi S, Moore F, Zarasvandi A (2014) Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth Sci Rev 138:25–46

    Article  Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate rocks. J Geophys Res 81:6091–6112

    Article  Google Scholar 

  • Baker DR (1989) Tracer versus trace element diffusion: diffusional decoupling of Sr concentration from Sr isotope composition. Geochim Cosmochim Ac 53:3015–3023

    Article  Google Scholar 

  • Ballato P, Uba CE, Landgraf A, Strecker MR, Sudo M, Stockli DF, Friedrich A, Tabatabaei SH (2011) Arabia–Eurasia continental collision: insights from late tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geol Soc Am Bull 123:106–131

    Article  Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 88:155–177

    Article  Google Scholar 

  • Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. T Roy Soc Edin Earth 83:145–153

    Article  Google Scholar 

  • Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. In: Gupta HK, Delany FM (eds) Zagros-Hindu Kush-Himalaya geodynamic evolution, vol 3. Am Geophys Union Geodynamics Series, Washington, DC, pp 5–32

    Chapter  Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Berzina AP, Berzina AN, Gimon VO (2014) Geochemical and Sr–Pb–Nd isotopic characteristics of the Shakhtama porphyry Mo–Cu system (Eastern Transbaikalia, Russia). J Asian Earth Sci 79:655–665

    Article  Google Scholar 

  • Beydoun ZR, Hughes Clarke MW, Stoneley R (1992) Petroleum in the Zagros Basin; a Late Tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich Paleozoic-Mesozoic passive-margin shelf. AAPG Mem 55:309–339

    Google Scholar 

  • Blundy JD, Sparks RSJ (1992) Petrogenesis of mafic inclusions in granitoids of the Adamelo Massif, Italy. J Petrol 33:1039–1104

    Article  Google Scholar 

  • Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two constrasting, mantle and crust, sources? a review. Lithos 78:1–24

    Article  Google Scholar 

  • Campbell IH, Turner JS (1985) Turbolent mixing between fluids with different viscosities. Nature 313:39–42

    Article  Google Scholar 

  • Campbell IH, Turner JS (1986) The influence of viscosity on fountains in magma chambers. J Petrol 27:1–30

    Article  Google Scholar 

  • Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west–central (105–99°W) Mexico. Contrib Miner Petrol 143:641–663

    Article  Google Scholar 

  • Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46:535–551

    Article  Google Scholar 

  • Chappell BW (2004) Towards a unified model of granite genesis. T Royal Soc Edin Earth 95:1–10

    Article  Google Scholar 

  • Chappell BW, White AJR (1991) Restite enclaves and the restite model. In: Didier J, Barbarin B (eds) Developments in petrology. Elsevier, Amsterdam, pp 375–381

    Google Scholar 

  • Chappell BW, White AJR, Williams IS, Wyborn D, Wyborn LAI (2000) Lachlan Fold Belt granites revisited: high- and low-temperature granites and their implications. Aust Earth Sci 47:123–138

    Article  Google Scholar 

  • Chen B, Jahn BM, Wei C (2002) Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd–Sr isotope evidence. Lithos 60:67–88

    Article  Google Scholar 

  • Cheng Y, Spandler C, Mao J, Rusk BG (2012) Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China: a case of two-stage mixing of crust- and mantle-derived magmas. Contrib Miner Petrol 164:659–676

    Article  Google Scholar 

  • Chiu HY, Chung SL, Zarrinkoub MH, Mohammadi SS (2013) Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162–163:70–87

    Article  Google Scholar 

  • Christiansen EH, Keith JD (1996) Trace-element systematics in silicic magmas: a metallogenic perspective. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulfide exploration, vol 12. Geological Association of Canada, Short Course Notes, pp 115–151

  • Chung SL, Chu MF, Ji J, O’Reilly SY, Pearson NJ, Liu D, Lee TY, Lo CH (2009) The nature and timing of crustal thickening in southern Tibet: geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics 477:36–48

    Article  Google Scholar 

  • Clarke DB (1992) Granitoid rocks. Chapman and Hall, London

    Google Scholar 

  • Çolakoğlu AR, Arehart GB (2010) The petrogenesis of Sarıçimen (Çaldıran-Van) quartz monzodiorite: implication for initiation of magmatism (Late Medial Miocene) in the east Anatolian collision zone. Turk Lithos 119:607–620

    Article  Google Scholar 

  • Dahlquist JA (2002) Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. J S Am Earth Sci 15:643–655

    Article  Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • De la Roche H, Leterrier J, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1R2 diagram and major-element analyses—its relationships with current nomenclature. Chem Geol 29:183–210

    Article  Google Scholar 

  • Debon F (1991) Comparative major element chemistry in various “microgranular enclave–plutonic host” pairs. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 293–312

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Didier J (1987) Granites and their enclaves. Elsevier, Amsterdam

    Google Scholar 

  • Dilek Y, Imamverdiyev N, Altunkaynak S (2010) Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Inter Geol Rev 52:536–578

    Article  Google Scholar 

  • Domenick MA, Kistler RE, Dodge FCW, Tatsumoto M (1983) Nd and Sr isotopic study of crustal and mantle inclusions from the Sierra Nevada and implications for batholith petrogenesis. Geol Soc Am Bull 94:713–719

    Article  Google Scholar 

  • Donaire T, Pascual E, Pin C, Duthou JL (2005) Microgranular enclaves as evidence of rapid cooling in granitoid rocks: the case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contrib Miner Petrol 149:247–265

    Article  Google Scholar 

  • Dorais MJ, Whitney JA, Roden MF (1990) Origin of mafic enclaves in the Dinkey Creek Pluton, Central Sierra Neveda Batholith, California. J Petrol 31:853–881

    Article  Google Scholar 

  • Drake MJ, Weill DF (1975) Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochim Cosmochim Acta 39:689–712

    Article  Google Scholar 

  • Ebertz GW, Nicholls IA, Maas R, McCulloch MT, Whitford DJ (1990) The Nd and Sr isotopic composition of I-type microgranitoid enclaves and their host rocks from the Swifts Creek pluton, southeast Australia. Chem Geol 85:119–134

    Article  Google Scholar 

  • Eichelberger JC (1975) Origin of andesite and dacite: evidence of mixing at Glass Mountain in California and other circum Pacific volcanoes. Geol Soc Am Bull 86:1381–1391

    Article  Google Scholar 

  • El-Bialy MZ, Omar MM (2015) Spatial association of Neoproterozoic continental arc I-type and post-collision A-type granitoids in the Arabian–Nubian Shield: the Wadi Al-Baroud older and younger granites, north eastern desert, Egypt. J Afr Earth Sci 103:1–29

    Article  Google Scholar 

  • Erdmann S, Clarke DB (2007) The contamination of granitic magma by metasedimentary country-rock material: an experimental study. Can Miner 45:43–61

    Article  Google Scholar 

  • Feng SJ, Zhao KD, Ling HF, Chen PR, Chen WF, Sun T, Jiang SY, Pu W (2014) Geochronology, elemental and Nd–Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: constraints on petrogenesis and post-collisional extension of the Wuyi–Yunkai orogeny. Lithos 206–207:1–18

    Article  Google Scholar 

  • Fernandez A, Barbarin B (1991) Relative rheology of coeval mafic and felsic magmas: nature of resulting interaction processes and shape and mineral fabrics of mafic microgranular enclaves. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 63–275

    Google Scholar 

  • Fershtater GB, Borodina NS (1977) Petrology of autoliths in granitic rocks. Inter Geol Rev 19:458–468

    Article  Google Scholar 

  • Flood RH, Shaw SE (2014) Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia: pressure quench cumulates. Lithos 198–199:92–102

    Article  Google Scholar 

  • Frost TP, Mahood GA (1987) Field, chemical and physical constraints on mafic-felsic magma interaction in the Lamark granodiorite, Sierra Nevada, California. Geol Soc Am Bull 99:272–291

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 41:2033–2048

    Article  Google Scholar 

  • Furman T, Spera FJ (1985) Co-mingling of acid and basic magma with implications for the origin of I-type xenoliths: field and petrochemical relations of an unusual dike complex at Eagle Lake, Sequoia National Park. J Volcanol Geoth Res 24:151–178

    Article  Google Scholar 

  • Gao Y, Hou Z, Kamber BS, Wei R, Meng X, Zhao R (2007) Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contrib Miner Petrol 153:105–120

    Article  Google Scholar 

  • Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K, Wu FY (2009) Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chem Geol 266:373–398

    Article  Google Scholar 

  • Geshi N (2000) Fractionation and magma mixing within intruding dike swarm: evidence from the Miocene Shitara-Otoge igneous complex, central Japan. J Volcanol Geoth Res 98:127–152

    Article  Google Scholar 

  • Golkaram S, Rashidnejad–Omran N, Azizi H, Asahara Y, Buchsd DM, McDonald I, Santose FJ (2016) Petrogenesis and geodynamic evolution of the Kajan Neogene subvolcanic rocks, Nain, Central Iran. Chem Erde 76:567–578

    Article  Google Scholar 

  • Green TH, Pearson NJ (1985) Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure. Geochim Cosmochim Acta 49:1465–1468

    Article  Google Scholar 

  • Guo F, Fan W, Li Ch, Gao X, Miao L (2009) Early Cretaceous highly positive εNd felsic volcanic rocks from the Hinggan Mountains, NE China: origin and implications for Phanerozoic crustal growth. Int J Earth Sci 98:1395–1411

    Article  Google Scholar 

  • Hafkenscheid E, Wortel MJR, Spakman W (2006) Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J Geophys Res 111:B08401

    Article  Google Scholar 

  • Hanson GN (1980) Rare earth elements in petrogenetic studies of igneous systems. Annu Rev Earth Planet Sci 8:371–406

    Article  Google Scholar 

  • Haschke M, Ahmadian J, Murata M, McDonald I (2010) Copper mineralization prevented by arc-root delamination during Alpine–Himalayan collision in Central Iran. Econ Geol 105:855–865

    Article  Google Scholar 

  • Hassanzadeh J, Wernicke BP (2016) The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics 35:586–621

    Article  Google Scholar 

  • Hatzfeld D, Molnar P (2010) Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev Geophys 48:1–48

    Article  Google Scholar 

  • Hempton MR (1987) Constraints on Arabian Plate motion and extensional history of the Red Sea. Tectonics 6:687–705

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Miner Petrol 98:455–489

    Article  Google Scholar 

  • Hofmann A (1980) Diffusion in silicate melts. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, New York, pp 385–417

    Google Scholar 

  • Holden P, Halliday AN, Stephens WE, Henney PJ (1991) Chemical and isotopic evidence for major mass transfer between mafic enclaves and felsic magma. Chem Geol 92:135–152

    Article  Google Scholar 

  • Holten T, Jamtveit B, Meakin P (2000) Noise and oscillatory zoning of minerals. Geochim Cosmochim Acta 64:893–1904

    Article  Google Scholar 

  • Honarmand M, Rashidnejad Omran N, Neubauer F, Emami MH, Nabatiand G, Liu X, Dong Y, Quadt A, Cheng B (2014) Laser-ICP-MS U–Pb zircon ages and geochemical and Sr–Nd–Pb isotopic compositions of the Niyasar plutonic complex, Iran: constraints on petrogenesis and tectonic evolution. Inter Geol Rev 56:104–132

    Article  Google Scholar 

  • Hooper RJ, Baron I, Hatcher RD, Agah S (1994) The development of the southern Tethyanmargin in Iran after the break-up of Gondwana-implications for the Zagros hydrocarbon province. Geoscience 4:72–85

    Google Scholar 

  • Hou ZQ, Guo YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  Google Scholar 

  • Jahn BM, Wu F, Lo DH, Tsai CH (1999) Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chem Geol 157:119–146

    Article  Google Scholar 

  • Jahn BM, Wu F, Chen B (2000) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23:82–92

    Google Scholar 

  • Jahn BM, Valui G, Kruk N, Gonevchuk V, Usuki M, Wu JTJ (2015) Emplacement ages, geochemical and Sr–Nd–Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin orogenic belt, Russian far east: crustal growth and regional tectonic evolution. J Asian Earth Sci 111:872–918

    Article  Google Scholar 

  • Kananian A, Sarjoughian F, Nadimi AR, Ahmadian J, Ling W (2014) Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh–Dokhtar Magmatic Arc (Iran): implications for source regions and magmatic evolution. J Asian Earth Sci 90:137–148

    Article  Google Scholar 

  • Karagaranbafghi F, Foeken JPT, Guest B, Stuart FM (2012) Cooling history of the Chapedony metamorphic core complex, Central Iran: implications for the Eurasia–Arabia collision. Tectonophysics 524–525:100–107

    Article  Google Scholar 

  • Karsli O, Chen B, Aydin F, Sen C (2007) Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dolek and Saricicek plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos 98:67–96

    Article  Google Scholar 

  • Kaygusuz A, Siebel W, Sen C, Satir M (2008) Petrochemistry and petrology of I-type granitoids in an arc setting: the composite Torul pluton, Eastern Pontides, NE Turkey. Inter Geol Earth Sci 97:739–764

    Article  Google Scholar 

  • Kaygusuz A, Arslan M, Siebel W, Sipahi F, İlbeyli N, Temizel İ (2014) LA-ICP MS zircon dating, whole-rock and Sr–Nd–Pb–O isotope geochemistry of the Camiboğazı pluton, Eastern Pontides, NE Turkey: implications for lithospheric mantle and lower crustal sources in arc-related I-type magmatism. Lithos 192–195:271–290

    Article  Google Scholar 

  • Keay S, Collins WJ, McCulloch MT (1997) A three-component Sr-Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia. Geology 25:307–310

    Article  Google Scholar 

  • Kim JS, Shin KC, Lee JD (2002) Petrographical study on the Yucheon granite and its enclaves. Geosci J 6:289–302

    Article  Google Scholar 

  • Laumonier M, Scaillet B, Arbaret L, Champallier R (2014a) Experimental simulation of magma mixing at high pressure. Lithos 196:281–300

    Article  Google Scholar 

  • Laumonier M, Scaillet B, Pichavant M, Champallier R, Andujar J, Arbaret L (2014b) On the conditions of magma mixing and its bearing on andesite production in the crust. Nat Commun 5:5607

    Article  Google Scholar 

  • Lee CTA, Lee TC, Wu CT (2014) Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas. Geochim Cosmochim Acta 143:8–22

    Article  Google Scholar 

  • Lesher CE (1990) Decoupling of chemical and isotopic exchange during magma mixing. Nature 344:235–237

    Article  Google Scholar 

  • Lesher CE (1994) Kinetics of Sr and Nd exchange in silicate liquids: theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas. J Geophys Res 99:9585–9604

    Article  Google Scholar 

  • Lesher CE (2010) Self-diffusion in silicate melts: theory, observations and applications to magmatic systems. Rev Miner Geochem 72:269–309

    Article  Google Scholar 

  • Li C, Li X, Li Q, Guo J, Li X, Yang Y (2012a) Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Anal Chim Acta 727:54–60

    Article  Google Scholar 

  • Li C, Li X, Li Q, Guo J, Li X, Feng L, Chu Z (2012b) Simultaneous determination of 143Nd/144Nd and 147Sm/144Nd ratios and Sm-Nd contents from the same filament loaded with purified Sm-Nd aliquot from geological samples by isotope dilution thermal ionization mass spectrometry. Anal Chem 84:6040–6047

    Article  Google Scholar 

  • Li ZZ, Qin KZ, Li GM, Ishihara S, Jin LY, Song GX, Meng ZJ (2014) Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing’an Range, NE China: Partial melting of the juvenile lower crust in intra-plate extensional environment. Lithos 202–203:138–156

    Article  Google Scholar 

  • Liu Z, Jiang YH, Jia RY, Zhao P, Zhou Q (2015) Origin of Late Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet Plateau, northwest China: implications for Paleo-Tethys evolution. Gondwana Res 27:326–341

    Article  Google Scholar 

  • Maas R, Nicholls IA, Legg C (1997) Igneous and metamorphic enclaves in the S-type Deddick granodiorite, Lachlan Fold Belt, SE Australia: petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. J Petrol 38:815–841

    Article  Google Scholar 

  • Macpherson CG (2008) Lithosphere erosion and crustal growth in subduction zones: insights from initiation of the nascent East Philippine Arc. Geology 36:311–314

    Article  Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Martin VM, Holness MB, Pyle DM (2006) The role of crystal frameworks in the preservation of enclaves during magma mixing. Earth Planet Sci Lett 248:787–799

    Article  Google Scholar 

  • McBirney AR (1980) Mixing and unmixing of magmas. J Volcanol Geoth Res 7:357–371

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • McQuarrie N, van Hinsbergen D (2013) Retrodeforming the Arabia-Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41:315–318

    Article  Google Scholar 

  • McQuarrie N, Stock JM, Verdel C, Wernicke BP (2003) Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysl Res Lett 30:1–4

    Google Scholar 

  • Mo X, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S, Ke S (2008) Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem Geol 250:49–67

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL (2014) Jurassic to Cenozoic tectonics of the zagros orogen in northwestern Iran. Int Geol Rev 56:263–287

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision Sanandaj–Sirjan zone Western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Moita P, Santos JF, Pereira MF, Costa M, Corfu F (2015) The quartz-dioritic Hospitais intrusion (SW Iberian Massif) and its mafic microgranular enclaves—evidence for mineral clustering. Lithos 224–225:78–100

    Article  Google Scholar 

  • Moore JG, Sisson TW (2008) Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith. Geosphere 4:387–400

    Article  Google Scholar 

  • Murphy JB (2007) Igneous rock associations 8. Arc magmatism II: geo-chemical and isotopic characteristics. J Geol assoc Can 34:7–36

    Google Scholar 

  • Nicolae I, Saccani E (2003) Petrology and geochemistry of the Late Jurassic calcalkaline series associated to Middle Jurassic ophiolites in the South Apuseni Mountains (Romania). Schweiz Miner Petrog Mitt 83:81–96

    Google Scholar 

  • Nittmann J, Daccord G, Stanley HE (1985) Fractal growth of viscous fingers: quantitative characterization of a fluid instability phenomenon. Nature 314:141–145

    Article  Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106:380–398

    Article  Google Scholar 

  • Osterhus L, Jung S, Berndt J, Hauff F (2014) Geochronology, geochemistry and Nd, Sr and Pb isotopes of syn-orogenic granodiorites and granites (Damara orogen, Namibia)—arc-related plutonism or melting of mafic crustal sources? Lithos 200–201:386–401

    Article  Google Scholar 

  • Pankhurst MJ, Vernon RH, Turner SP, Schaefer BF, Foden JD (2011) Contrasting Sr and Nd isotopic behaviour during magma mingling; new insights from the Mannum A-type granite. Lithos 126:135–146

    Article  Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Miner Petrol 69:33–47

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Perugini D, Poli G, Christofides G, Eleftheriadis G (2003) Magma mixing in the Sithonia plutonic complex, Greece: evidence from mafic microgranular enclaves. Miner Petrol 78:173–200

    Article  Google Scholar 

  • Perugini D, Ventura G, Petrelli M, Poli G (2004) Kinematic significance of morphological structures generated by mixing of magmas: a case study from Salina Island (southern Italy). Earth Planet Sci Lett 222:1051–1066

    Article  Google Scholar 

  • Petford N, Atherton A (1996) Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J Petrol 37:1491–1521

    Article  Google Scholar 

  • Philpotts AR, Shi J, Brustman C (1998) Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature 395:343–346

    Article  Google Scholar 

  • Piccoli PM, Candela PA (2002) Apatite in igneous system. Rev Miner Geochem 48:255–292

    Article  Google Scholar 

  • Pin C, Binon M, Belin J, Barbarin B, Clemens JD (1990) Origin of microgranular enclaves in granitoids: equivocal Sr–Nd evidence from Hercynian rocks in the Massif Central (France). J Geophys Res 95:17821–17828

    Article  Google Scholar 

  • Piochi M, Civetta L, Orsi G (1999) Mingling in the magmatic system of Ischia (Italy) in the past 5 ka. Miner Petrol 66:227–258

    Article  Google Scholar 

  • Poli G (1992) Geochemistry of Tuscan Archipelago Granitoids, Central Italy: the role of hybridization processes in their genesis. J Geol 100:41–56

    Article  Google Scholar 

  • Poli G, Tommasini S (1990) Model for the origin and significance of microgranular enclaves in calc-alkaline granitoids. J Petrol 32:657–666

    Article  Google Scholar 

  • Poli G, Tommasini S, Halliday AN (1996) Trace element and isotopic exchange during acid-basic magma interaction processes. T Roy Soc Edin Earth 87:225–232

    Article  Google Scholar 

  • Radfar J, Amini Jehragh MR, Emami MH (1999) Geological map of Ardestan, scale 1:100000. Geological Survey of Iran, Iran

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Rezaei-Kahkhaei M, Galindo C, Pankhurst RJ, Esmaeily D (2011) Magmatic differentiation in the calc-alkaline Khalkhab–Neshveh pluton, Central Iran. J Asian Earth Sci 42:499–514

    Article  Google Scholar 

  • Richards JP (2015) Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geol Rev 70:323–345

    Article  Google Scholar 

  • Richards JP, Spell T, Rameh E, Razique A, Fletcher T (2012) High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Econ Geol 107:295–332

    Article  Google Scholar 

  • Robertson AHF (2000) Mesozoic-Tertiary tectonicsedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey. Geol Soc Lond Spec Publ 173:97–138

    Article  Google Scholar 

  • Robertson A, Parlak O, Ustaömer T (2009) Melange genesis and ophiolite emplacement related to subduction of the northern margin of the Tauride? Anatolide continent, central and western Turkey. Geol Soc Lond Spec Publ 311:9–55

    Article  Google Scholar 

  • Rogers NW, Hawkesworth CJ, Ormerod DS (1989) Late Cenozoic basaltic magmatism in the Western Great Basin California and Nevada. J Geophys Res 100:10287–10301

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evolution, presentation, interpretation. Longman Scientific and Technical, UK

    Google Scholar 

  • Ross PS, Bedard JH (2009) Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Can J Earth Sci 46:823–839

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, Oxford, pp 1–64

    Google Scholar 

  • Sadeghian M, Ghaffary M (2011) The petrogenesis of Zafarghand granitoid pluton (SE of Ardestan). Petrology 2:47–70 (Persian with English Abstract)

    Google Scholar 

  • Sajona FG, Maury RC, Bellon H, Cotton J, Defant M (1996) High field strength elements of Pliocene–Pleistocene island-arc basalts Zamboanga Peninsula, Western Mindanao (Philippines). J Petrol 37:693–726

    Article  Google Scholar 

  • Sarjoughian F, Kananian A (2017) Zircon U-Pb geochronology and emplacement history of intrusive rocks in the Ardestan section, Central Iran. Geol Acta 15:25–36

    Google Scholar 

  • Sarjoughian F, Kananian A, Haschke M, Ahmadian J, Ling W, Zong K (2012) Magma mingling and hybridization in the Kuh-e Dom pluton, Central Iran. J Asian Earth Sci 54–55:49–63

    Article  Google Scholar 

  • Saunders AD, Tarney J (1984) Geochemical characteristics of basaltic volcanism in back-arc basins. In Kokelaar BP, Howells MF (eds) Marginal basin geology: volcanic and associated sedimentary and tectonic processes in modern and ancient marginal basins, vol 16. Geol Soc London, London, pp 59–76

    Google Scholar 

  • Schonenberger J, Marks M, Wagner T, Markl G (2006) Fluid-rock interaction in autoliths of agpaitic nepheline syenites in the Ilimaussaq intrusion, South Greenland. Lithos 91:331–351

    Article  Google Scholar 

  • Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Depos 44:265–283

    Article  Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117:619–635

    Article  Google Scholar 

  • Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geoth Res 29:99–124

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc 42:313–345

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Thieblemont D, Tegyey M (1994) Geocchemical discrimination of differentiated magmatic rocks attesting for the variable origin and tectonic setting of calc-alkaline magmas. C R Acad Sci II 319:87–94

    Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves: globules of hybrid magma quenched in a plutonic environment. Nature 304:438–439

    Article  Google Scholar 

  • Vernon RH (1990) Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. J Geophys Res 95:17849–71859

    Article  Google Scholar 

  • Vernon RH (1991) Interpretation of microstructures of microgranitoid enclaves. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 277–291

    Google Scholar 

  • Vernon RH, Etheridge ME, Wall VJ (1988) Shape and microstructure of microgranitoid enclaves: indicators of magma mingling and flow. Lithos 22:1–11

    Article  Google Scholar 

  • Vernon RH, Johnson SE, Melis EA (2004) Emplacement-related microstructures in the margin of a deformed tonalite pluton: the San José pluton, Baja California, México. J Struct Geol 26:1845–1865

    Article  Google Scholar 

  • Waight TE, Maas R, Nicholls IA (2000) Fingerprinting feldspar phenocrysts using crystal isotopic composition stratigraphy: implications for crystal transfer and magma mingling in S-type granites. Contrib Miner Petrol 139:227–239

    Article  Google Scholar 

  • Watson EB (1982) Basalt contamination by continental crust: some experiments and models. Contrib Miner Petrol 80:73–87

    Article  Google Scholar 

  • Weaver BL, Tarney J (1984) Estimating the composition of the continental crust: an empirical approach. Nature 310:575–577

    Article  Google Scholar 

  • Weinberg RF, Sial AN, Pessoa RR (2001) Magma flow within the traverse pluton, northeastern Brazil: compositional and thermal convection. Geol Soc Am Bull 113:508–520

    Article  Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22

    Article  Google Scholar 

  • White AJR, Chappell BW, Wyborn D (1999) Application of the restite model to the Deddick Granodiorite and its enclaves—a reinterpretation of the observations and data of Maas et al. (1997). J Petrol 40:413–421

    Article  Google Scholar 

  • Whitechurch H, Omrani J, Agard P, Humbert F, Montigny R, Jolivet L (2013) Evidence for Paleocene–Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran) from back-arc to arc: implications for regional geodynamics and obduction. Lithos 182–183:11–32

    Article  Google Scholar 

  • Wu FY, Jahn BM, Lin Q (1998) Isotopic characteristics of the post-orogenic granite in orogenic belt of northern China and their implications in crustal growth. Chin Sci Bull 43:420–424

    Article  Google Scholar 

  • Wu FY, Jahn BM, Wilde SA, Sun DY (2000) Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics 328:89–113

    Article  Google Scholar 

  • Wu RX, Zheng YF, Wu YB, Zhao ZF, Zhang SB, Liu X, Wu FY (2006) Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Res 146:179–212

    Article  Google Scholar 

  • Yang JH, Wu FY, Wilde S, Xie LW, Yang YH, Liu XM (2007) Tracing magma mixing in granite genesis: in situ U–Pb dating and Hf-isotope analysis of zircons. Contrib Miner Petrol 153:177–190

    Article  Google Scholar 

  • Yang XM, Lentz DR, Chi G, Thorne KG (2008) Geochemical characteristics of gold-related granitoids in southwestern New Brunswick, Canada. Lithos 104:355–377

    Article  Google Scholar 

  • Yang YH, Zhang HF, Chu ZY, Xie LW, Wu FY (2010) Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int J Mass Spectrom 290:120–126

    Article  Google Scholar 

  • Yang H, Ge WC, Zhao GC, Dong Y, Xu WL, Ji Z, Yu JJ (2015a) Late Triassic intrusive complex in the Jidong region, Jiamusi–Khanka Block, NE China: Geochemistry, zircon U–Pb ages, Lu–Hf isotopes, and implications for magma mingling and mixing. Lithos 224–225:143–159

    Article  Google Scholar 

  • Yang LQ, Deng J, Qiu KF, Ji XZ, Santosh M, Song KR, Song YH, Geng JZ, Zhang C, Hua B (2015b) Magma mixing and crust–mantle interaction in the Triassic monzogranites of Bikou Terrane, central China: Constraints from petrology, geochemistry, and zircon U–Pb–Hf isotopic systematics. J Asian Earth Sci 98:320–341

    Article  Google Scholar 

  • Yilmaz Sahin S (2008) Geochemistry of mafic microgranular enclaves in the Tamdere Quartz Monzonite, south of Dereli/Giresun, Eastern Pontides, Turkey. Chem Erde Geochem 68:81–92

    Article  Google Scholar 

  • Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Miner Geochem 72:311–408

    Article  Google Scholar 

  • Zhang X, Yuan L, Wilde SA (2014a) Crust/mantle interaction during the construction of an extensional magmatic dome: middle to Late Jurassic plutonic complex from western Liaoning, North China Craton. Lithos 205:185–207

    Article  Google Scholar 

  • Zhang J, Ma C, Xiong F, Liu B, Li J, Pan Y (2014b) Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun Orogen, western China: response to continental collision and slab break-off. Lithos 210–211:129–146

    Article  Google Scholar 

  • Zhang Y, Sun M, Yuan C, Xu Y, Long X, Tomurhuu D, Wang CY, He B (2015) Magma mixing origin for high Ba–Sr granitic pluton in the Bayankhongor area, central Mongolia: response to slab roll-back. J Asian Earth Sci 113:353–368

    Article  Google Scholar 

Download references

Acknowledgements

Thanks go to the University of Kurdistan for supporting this project under grants provided by the research council (number: 4.64500; date: 3/11/2015). This study was also financially supported by the “National Natural Science Foundation of China (41472192)", and the State Key Laboratory of Lithosphere Evolution (11232240). DL is supported by a NSERC Discovery grant. This is a contribution to IGCP 592. We acknowledge Prof. Dr. Wolf-Christian Dullo, Prof. Greg Shellnutt, Prof. Saskia Erdmann, and anonymous reviewer for their constructive comments leading to important improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Sarjoughian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarjoughian, F., Lentz, D., Kananian, A. et al. Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex. Int J Earth Sci (Geol Rundsch) 107, 1127–1151 (2018). https://doi.org/10.1007/s00531-017-1548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1548-8

Keywords

Navigation