Skip to main content
Log in

Regularity of a class of non-uniformly nonlinear elliptic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we obtain the interior \(C^{1,\alpha }\) regularity of weak solutions for a class of non-uniformly nonlinear elliptic equations

$$\begin{aligned} \text {div} ~\! \left( a_1\left( \left| \nabla u \right| \right) \nabla u + a_2\left( \left| \nabla u \right| \right) \nabla u \right) =0, \end{aligned}$$

including the following special model

$$\begin{aligned} \text {div} ~\! \left( \left| \nabla u \right| ^{p-2} \nabla u + \left| \nabla u \right| ^{q-2} \nabla u \right) =0\quad \ \text{ for } \text{ any } \ p, q>1. \end{aligned}$$

These equations come from variational problems whose model energy functional is given by

$$\begin{aligned} \mathcal {P}(u, \Omega )=: \int _{\Omega } B^1\left( \left| \nabla u \right| \right) + B^{2}\left( \left| \nabla u \right| \right) dx, \end{aligned}$$

where

$$\begin{aligned} B^k(t)=\int _0^t \tau a_k(\tau )~d\tau \quad \text{ for } \quad t\ge 0 \quad \text{ and }\quad k=1,2. \end{aligned}$$

We remark that

$$\begin{aligned} B^k(t)= |t|^{\alpha _k} \log \big ( 1+|t|\big ) \quad \text{ for } ~~ ~~\alpha _k>1~~~ \text{ and }~~k=1,2 \end{aligned}$$

satisfy the given conditions in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Byun, S., Yao, F., Zhou, S.: Gradient Estimates in Orlicz space for nonlinear elliptic Equations. J. Funct. Anal. 255(8), 1851–1873 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130(1), 189–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Wu, L.: Second Order Elliptic Partial Differential Equations and Elliptic Systems. American Mathematical Society, Providence (1998)

    Google Scholar 

  5. Cianchi, A., Maz’ya, V.: Global Lipschitz regularity for a class of quasilinear elliptic equations. Commun. Partial Differ. Equ. 36(1), 100–133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cianchi, A., Maz’ya, V.: Global boundedness of the gradient for a class of nonlinear elliptic systems. Arch. Ration. Mech. Anal. 212(1), 129–177 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cianchi, A., Maz’ya, V.: Gradient regularity via rearrangements for \(p\)-Laplacian type elliptic boundary value problems. J. Eur. Math. Soc. 16(3), 571–595 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218(1), 219–273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coscia, A., Mingione, G.: Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris Sér. I Math. 328(4), 363–368 (1999)

  11. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duzaar, F., Mingione, G.: Local Lipschitz regularity for degenerate elliptic systems. Ann. Inst. H. Poincareé 27(6), 1361–1396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, L.C.: A new proof of local \(C^{1,\alpha }\) regularity for solutions of certain degenerate elliptic p.d.e. J. Differ. Equ. 45(3), 356–373 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, X.: Global \(C^{1,\alpha }\) regularity for variable exponent elliptic equations in divergence form. J. Differ. Equ. 235(2), 397–417 (2007)

  15. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton, NJ (1983)

    MATH  Google Scholar 

  16. Gilbarg, D., Trudinger, N.: Elliptic Partial Diferential Equations of Second Order, 3rd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  17. Lewis, J.L.: Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 32(6), 849–858 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rao, M., Ren, Z.: Applications of Orlicz Spaces. Marcel Dekker Inc., New York (2000)

    MATH  Google Scholar 

  19. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138, 219–240 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, L.: Compactness methods for certain degenerate elliptic equations. J. Differ. Equ. 107(2), 341–350 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, L., Yao, F.: Global regularity for higher order divergence elliptic and parabolic equations. J. Funct. Anal. 266(2), 792–813 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, L., Yao, F., Zhou, S., Jia, H.: Optimal regularity for the poisson equation. Proc. Am. Math. Soc. 137, 2037–2047 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengping Yao.

Additional information

Communicated by A. Chang.

This work is supported in part by the NSFC (11471207) and the Innovation Program of Shanghai Municipal Education Commission (14YZ027).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yao, F. Regularity of a class of non-uniformly nonlinear elliptic equations. Calc. Var. 55, 121 (2016). https://doi.org/10.1007/s00526-016-1064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1064-x

Mathematics Subject Classification

Navigation