Skip to main content
Log in

Regularity for Double Phase Variational Problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove sharp regularity theorems for minimisers of a class of variational integrals whose integrand switches between two different types of degenerate elliptic phases, according to the zero set of a modulating coefficient \({a(\cdot)}\). The model case is given by the functional

$$ w \mapsto \int (|Dw|^p + a(x)|Dw|^q) \, {\rm d}x,$$

where qp and \({a(\cdot) \geqq 0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Bouchitté G., Fonseca I.: Relaxation of convex functionals: the gap problem. Ann. Inst. H. Poincaré Anal. Non Linèaire 20, 359–390 (2003)

    Article  ADS  MATH  Google Scholar 

  2. Acerbi E., Fusco N.: Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140, 115–135 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acerbi E., Fusco N.: A transmission problem in the calculus of variations. Calc. Var. PDE 2, 1–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Acerbi E., Mingione G.: Regularity results for a class of functionals with non-standard growth. Arch. Rat. Mech. Anal. 156, 121–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baroni, P., Colombo, M., Mingione, G.: Flow of double phase functionals. To appear.

  6. Bildhauer M., Fuchs M.: \({C^{1,\alpha}}\)-solutions to non-autonomous anisotropic variational problems. Calc. Var. PDE 24, 309–340 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Breit D.: New regularity theorems for non-autonomous variational integrals with (p, q)-growth. Calc. Var. PDE 44, 101–129 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carozza, M., Kristensen, J., Passarelli di Napoli, A.: Higher differentiability of minimizers of convex variational integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 395–411 (2011)

  9. Carozza, M., Kristensen, J., Passarelli di Napoli, A., : Regularity of minimizers of autonomous convex variational integrals. Ann. Scu. Sup. Pisa. Cl. Sci. (V). doi:10.2422/2036-2145.201208_005

  10. Colombo, M., Mingione, G., : Bounded minimisers of double phase variational integrals. (2014, Preprint)

  11. Coscia, A., Mingione, G., : Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris Sér. I Math. 328, 363–368 (1999)

  12. De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. (III) 125(3), 25–43 (1957)

  13. DiBenedetto, E.: Partial Differential Equations. 2nd ed. Cornerstones. Birkhäuser, Inc., Boston, 2010

  14. Diening L., Verde A., Stroffolini B.: Everywhere regularity of functionals with \({\varphi}\)-growth. Manuscripta Math. 129, 449–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esposito L., Leonetti F., Mingione G.: Sharp regularity for functionals with (p, q) growth. J. Differ. Equ. 204, 5–55 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fonseca I., Malý J.: Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 309–338 (1997)

    Article  ADS  MATH  Google Scholar 

  17. Fonseca, I., Malý, J., Mingione, G.: Scalar minimizers with fractal singular sets. Arch. Rat. Mech. Anal. 172, 295–307 (2004)

  18. Foss, M.: Global regularity for almost minimizers of nonconvex variational problems. Ann. Mat. Pura e Appl. (IV) 187, 263–231 (2008)

  19. Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals. Acta Math. 148, 31–46 (1982)

  20. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin, 1977

  21. Giusti, E.: Direct methods in the calculus of variations. World Scientific Publishing Co., Inc., River Edge, 2003

  22. Hedberg L.I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36, 505–510 (1972)

    Article  MathSciNet  Google Scholar 

  23. Kristensen J.: Lower semicontinuity in Sobolev spaces below the growth exponent of the integrand. Proc. Roy. Soc. Edinburgh Sect. A 127, 797–817 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kristensen J., Mingione G.: The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180, 331–398 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuusi, T., Mingione, G.: New perturbation methods for nonlinear parabolic problems. J. Math. Pures Appl. (IX) 98, 390–427 (2012)

  26. Ladyzhenskaya, O.A., Ural’tseva, N.N., : Linear and quasilinear elliptic equations. 2nd ed. (in Russian). “Nauka”, Moscow, 1973.

  27. Lieberman G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Comm. PDE 16, 311–361 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lieberman, G.M.: Gradient estimates for a class of elliptic systems. Ann. Mat. Pura Appl. (IV) 164, 103–120 (1993)

  29. Lieberman, G.M.: Gradient estimates for a new class of degenerate elliptic and parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 21, 497–522 (1994)

  30. Lieberman, G.M.: Gradient estimates for anisotropic elliptic equations. Adv. Diff. Equ. 10, 767–182 (2005)

  31. Lindqvist, P.: Notes on the p-Laplace equation. Univ. Jyväskylä, Report 102 (2006)

  32. Manfredi, J.J.: Regularity for minima of functionals with p-growth. J. Differ. Equ. 76, 203–212 (1988)

  33. Manfredi, J.J.: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations. Ph.D. Thesis. University of Washington, St. Louis, 1986

  34. Marcellini, P.: On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 391–409 (1986)

  35. Marcellini P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rat. Mech. Anal. 105, 267–284 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marcellini P.: Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105, 296–333 (1993)

  38. Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 23, 1–25 (1996)

  39. Mascolo, E., Papi, G.: Harnack inequality for minimizers of integral functionals with general growth conditions. Nonlinear Differ. Equ. Appl. 3, 231–244 (1996)

  40. Mingione G.: Bounds for the singular set of solutions to non linear elliptic systems. Calc. Var. PDE 18, 373–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mingione, G., : Regularity of minima: an invitation to the Dark side of the Calculus of Variations. Appl. Math. 51 (2006), 355-425

  42. Mingione, G., Mucci, D.: Integral functionals and the gap problem: sharp bounds for relaxation and energy concentration. SIAM J. Math. Anal. 36, 1540–1579 (2005)

  43. Schmidt, T.: Regularity of minimizers of W 1,p-quasiconvex variational integrals with \({(p, q)}\)-growth. Calc. Var. PDE 32, 1–24 (2008)

  44. Schmidt T.: Regularity of relaxed minimizers of quasiconvex variational integrals with (p, q)-growth. Arch. Rat. Mech. Anal. 193, 311–337 (2009)

    Article  MATH  Google Scholar 

  45. Uhlenbeck K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138, 219–240 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ural’tseva, N.N.: Degenerate quasilinear elliptic systems. Zap. Na. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7, 184–222 (1968)

  47. Ural’tseva, N.N., Urdaletova, A.B.: The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations. Vestnik Leningrad Univ. Math. 19 (1983, russian); english. tran.: 16, 263–270 (1984)

  48. Zhikov V.V.: Problems of convergence, duality, and averaging for a class of functionals of the calculus of variations. Dokl. Akad. Nauk SSSR 267, 524–528 (1982)

    MathSciNet  Google Scholar 

  49. Zhikov V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)

    MathSciNet  Google Scholar 

  50. Zhikov, V.V.: Lavrentiev phenomenon and homogenization for some variational problems. C. R. Acad. Sci. Paris Sér. I Math. 316, 435–439 (1993)

  51. Zhikov V.V.: On Lavrentiev’s phenomenon. Russian J. Math. Phys. 3, 249–269 (1995)

    MathSciNet  MATH  Google Scholar 

  52. Zhikov V.V.: On some variational problems. Russian J. Math. Phys. 5, 105–116 (1997)

    MathSciNet  MATH  Google Scholar 

  53. Zhikov V.V., Kozlov S.M., Oleinik O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mingione.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, M., Mingione, G. Regularity for Double Phase Variational Problems. Arch Rational Mech Anal 215, 443–496 (2015). https://doi.org/10.1007/s00205-014-0785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0785-2

Keywords

Navigation