Skip to main content
Log in

Monotonicity formulas for obstacle problems with Lipschitz coefficients

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove quasi-monotonicity formulas for classical obstacle-type problems with energies being the sum of a quadratic form with Lipschitz coefficients, and a Hölder continuous linear term. With the help of those formulas we are able to carry out the full analysis of the regularity of free-boundary points following the approaches by Caffarelli (J Fourier Anal Appl 4(4–5), 383–402, 1998), Monneau (J Geom Anal 13(2), 359–389, 2003), and Weiss (Invent Math 138(1), 23–50, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282(2), 431–461 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Athanasopoulos, I., Caffarelli, L.A.: A theorem of real analysis and its application to free boundary problems. Commun. Pure Appl. Math. 38(5), 499–502 (1985)

    Article  MathSciNet  Google Scholar 

  3. Blank, I.: Sharp results for the regularity and stability of the free boundary in the obstacle problem. Indiana Univ. Math. J. 50(3), 1077–1112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A.: The regularity of free boundaries in higher dimensions. Acta Math. 139(3–4), 155–184 (1977)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L.A.: Compactness methods in free boundary problems. Commun. Partial Differ. Equ. 5(4), 427–448 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L.A.: The obstacle problem revisited. Lezioni Fermiane [Fermi Lectures]. Accademia Nazionale dei Lincei, Rome; Scuola Normale Superiore, Pisa, ii+54 pp (1998)

  7. Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.A., Fabes, E., Mortola, S., Salsa, S.: Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30(4), 621–640 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A., Salsa, S.: A geometric approach to free boundary problems. Graduate Studies in Mathematics, vol. 68. American Mathematical Society, Providence, x+270 pp (2005)

  10. Caffarelli, L.A., Karp, L., Shahgholian, H.: Regularity of a free boundary with application to the Pompeiu problem. Ann. Math. (2) 151(1), 269–292 (2000)

  11. Cerutti, M.C., Ferrari, F., Salsa, S.: Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are \(C^{1,\gamma }\). Arch. Ration. Mech. Anal. 171(3), 329–348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferrari, F., Salsa, S.: Regularity of the free boundary in two-phase problems for linear elliptic operators. Adv. Math. 214(1), 288–322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferrari, F., Salsa, S.: Regularity of the solutions for parabolic two-phase free boundary problems. Commun. Partial Differ. Equ. 35(6), 1095–1129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, A.: Variational Principles and Free Boundary Problems, 2nd edn. Robert E. Krieger Publishing Co., Inc, Malabar, x+710 pp (1988)

  15. Giusti, E.: Equazioni ellittiche del secondo ordine, Quaderni Unione Matematica Italiana, vol. 6. Pitagora Editrice, Bologna, v+213 pp (1978)

  16. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin, xiv+517 pp (2001)

  17. Jerison, D., Kenig, C.: Boundary behaviour of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Pure and Applied Mathematics, vol. 88. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, xiv+313 pp (1980)

  19. Kukavica, I.: Quantitative uniqueness for second-order elliptic operators. Duke Math. J. 91(2), 225–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, F.: On regularity and singularity of free boundaries in obstacle problems. Chin. Ann. Math. Ser. B 30(5), 645–652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matevosyan, N., Petrosyan, A.: Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients. Commun. Pure Appl. Math. 64(2), 271–311 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Monneau, R.: On the number of singularities for the obstacle problem in two dimensions. J. Geom. Anal. 13(2), 359–389 (2003)

    Article  MathSciNet  Google Scholar 

  23. Petrosyan, A., Shahgholian, H.: Geometric and energetic criteria for the free boundary regularity in an obstacle-type problem. Am. J. Math. 129(6), 1659–1688 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of free boundaries in obstacle-type problems. Graduate Studies in Mathematics, vol. 136. American Mathematical Society, Providence, x+221 pp (2012)

  25. Rodrigues, J.F.: Obstacle problems in mathematical physics. North-Holland Mathematics Studies, vol. 134. Notas de Matemtica [Mathematical Notes], vol. 114. North-Holland Publishing Co., Amsterdam, xvi+352 pp (1987)

  26. Wang, P.Y.: Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. I. Lipschitz free boundaries are \(C^{1,\alpha }\). Commun. Pure Appl. Math. 53(7), 799–810 (2000)

    Article  MATH  Google Scholar 

  27. Wang, P.Y.: Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz. Commun. Partial Differ. Equ. 27(7–8), 1497–1514 (2002)

    Article  MATH  Google Scholar 

  28. Weiss, G.S.: A homogeneity improvement approach to the obstacle problem. Invent. Math. 138(1), 23–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weiss, G.S.: An obstacle-problem-like equation with two phases: pointwise regularity of the solution and an estimate of the Hausdorff dimension of the free boundary. Interfaces Free Bound. 3(2), 121–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ziemer, W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation. GTM, vol. 120. Springer, New York, xvi+308 pp (1989)

Download references

Acknowledgments

The first two authors have been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Focardi.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Focardi, M., Gelli, M.S. & Spadaro, E. Monotonicity formulas for obstacle problems with Lipschitz coefficients. Calc. Var. 54, 1547–1573 (2015). https://doi.org/10.1007/s00526-015-0835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0835-0

Mathematics Subject Classification

Navigation