Skip to main content
Log in

Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L.A.: The regularity of free boundaries in higher dimensions. Acta Math. 139, 155–184 (1977)

    Article  MathSciNet  Google Scholar 

  2. Caffarelli, L.A.: Compactness methods in free boundary problems. Commun. Partial Differ. Equ. 5, 427–448 (1980)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L.A.: The Obstacle Problem Revisited. Lezioni Fermiane. Accademia Nazionale dei Lincei, Rome (1998)

    Book  Google Scholar 

  4. Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4, 383–402 (1998)

    Article  MathSciNet  Google Scholar 

  5. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications Pure and Applied Mathematics, vol. 88., p. xiv+313. Academic Press Inc, New York (1980)

    MATH  Google Scholar 

  6. Caffarelli, L.A., Salsa, S.: A Geometric Approach to Free Boundary Problems. Graduate Studies in Mathematics, vol. 68, p. x+270. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  7. Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of Free Boundaries in Obstacle-Type Problems Graduate Studies in Mathematics, vol. 136, p. x+221. American Mathematical Society, Providence, RI (2012)

    Book  Google Scholar 

  8. Focardi, M., Gelli, M.S., Spadaro, E.: Monotonicity formulas for obstacle problems with Lipschitz coefficients. Calc. Var. Partial Differ. Equ. 54, 1547–1573 (2015)

    Article  MathSciNet  Google Scholar 

  9. Geraci, F.: The classical obstacle problem with coefficients in fractional Sobolev spaces. Ann. Mat. Pura Appl. 4(197), 549–581 (2018)

    Article  MathSciNet  Google Scholar 

  10. Focardi, M., Geraci, F., Spadaro, E.: The classical obstacle problem for nonlinear variational energies. Nonlinear Anal. 154, 71–87 (2017)

    Article  MathSciNet  Google Scholar 

  11. Weiss, G.S.: A homogeneity improvement approach to the obstacle problem. Invent. Math. 138, 23–50 (1999)

    Article  MathSciNet  Google Scholar 

  12. Monneau, R.: On the number of singularities for the obstacle problem in two dimensions. J. Geom. Anal. 13, 359–389 (2003)

    Article  MathSciNet  Google Scholar 

  13. Kukavica, I.: Quantitative uniqueness for second-order elliptic operators. Duke Math. J. 91, 225–240 (1998)

    Article  MathSciNet  Google Scholar 

  14. Colombo, M., Spolaor, L., Velichkov, B.: A logarithmic epiperimetric inequality for the obstacle problem. Geom. Funct. Anal. (2018). https://doi.org/10.1007/s00039-018-0451-1

    Article  MathSciNet  Google Scholar 

  15. Figalli, A., Serra, J.: On the fine structure of the free boundary for the classical obstacle problem. Preprint arXiv:1709.04002

  16. Uraltseva, N.: Regularity of solutions of variational inequalities. Russian Math. Surveys 42(6), 191–219 (1987)

    Article  MathSciNet  Google Scholar 

  17. Han, Q., Lin, F.: Elliptic Partial Differential Equations. Courant Lecture Notes in Mathematics, 2nd edn, p. x+147. American Mathematical Society, Providence (2011)

    Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. pp. xiv+517. Springer, Berlin (2001)

    Chapter  Google Scholar 

  19. Miranda, C.: Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui. (Italian). Ann. Mat. Pura Appl. 4(63), 353–386 (1963)

    Article  Google Scholar 

  20. Blank, I., Hao, Z.: The mean value theorem and basic properties of the obstacle problem for divergence form elliptic operators. Commun. Anal. Geom. 23, 129–158 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Emanuele Spadaro has been supported by the ERC-STG Grant No. 759229 HiCoS “Higher Co-dimension Singularities: Minimal Surfaces and the Thin Obstacle Problem.” Matteo Focardi, Francesco Geraci, Emanuele Spadaro are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Focardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Focardi, M., Geraci, F. & Spadaro, E. Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications. J Optim Theory Appl 184, 125–138 (2020). https://doi.org/10.1007/s10957-018-1398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1398-y

Keywords

Mathematics Subject Classification

Navigation