Skip to main content

Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications

  • Chapter
  • First Online:
Variational Views in Mechanics

Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 46))

  • 545 Accesses

Abstract

We establish Weiss and Monneau’s type quasi-monotonicity formulas for quadratic energies having a matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension. We provide applications to the free boundary analysis for the corresponding classical obstacle problems first, and then for nonlinear classical obstacle problems thanks to a linearization argument

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blank, I., Hao Z.: The mean value theorem and basic properties of the obstacle problem for divergence form elliptic operators. Commun. Analy. Geometry 23, 129–158 (2015)

    Article  MathSciNet  Google Scholar 

  2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  3. Caffarelli, L.A.: The regularity of free boundaries in higher dimensions. Acta Math. 139, 155–184 (1977)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.A.: Compactness methods in free boundary problems. Comm. Partial Differ. Equ. 5, 427–448 (1980)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L.A.: The obstacle problem revisited. Lezioni Fermiane. Accademia Nazionale dei Lincei, Rome; Scuola Normale Superiore, Pisa (1998)

    Google Scholar 

  6. Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4, 383–402 (1998)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L.A., Salsa, S.: A Geometric Approach to Free Boundary Problems. Graduate Studies in Mathematics, vol. 68. American Mathematical Society, Providence, (2005)

    Google Scholar 

  8. Colombo, M., Spolaor, L., Velichkov, B.: A logarithmic epiperimetric inequality for the obstacle problem. Geom. Funct. Anal. 28(4), 1029–1061 (2018)

    Article  MathSciNet  Google Scholar 

  9. Figalli, A., Serra, J.: On the fine structure of the free boundary for the classical obstacle problem. Invent. Math. 215(1), 311–366 (2019)

    Article  MathSciNet  Google Scholar 

  10. Figalli, A., Ros-Oton, X., Serra, J.: Generic regularity of free boundaries for the obstacle problem. Publ. Math. Inst. Hautes Études Sci. 132, 181–292 (2020)

    Article  MathSciNet  Google Scholar 

  11. Focardi, M., Gelli, M.S., Spadaro, E.: Monotonicity formulas for obstacle problems with Lipschitz coefficients. Calc. Var. Partial Differ. Equ. 54, 1547–1573 (2015)

    Article  MathSciNet  Google Scholar 

  12. Focardi, M., Geraci, F., Spadaro, E.: The classical obstacle problem for nonlinear variational energies. Nonlinear Anal. 154, 71–87 (2017)

    Article  MathSciNet  Google Scholar 

  13. Geraci, F.: The classical obstacle problem with coefficients in fractional Sobolev spaces. Ann. Mat. Pura Appl. 197, 549–581 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)

    Google Scholar 

  15. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing, River Edge (2003)

    Book  Google Scholar 

  16. Han, Q., Lin, F.: Elliptic Partial Differential Equations. Courant Lecture Notes in Mathematics, , 2nd edn. American Mathematical Society, Providence (2011)

    Google Scholar 

  17. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Pure and Applied Mathematics, vol. 88. Academic, New York (1980)

    Google Scholar 

  18. Kukavica, I.: Quantitative uniqueness for second-order elliptic operators. Duke Math. J. 91, 225–240 (1998)

    Article  MathSciNet  Google Scholar 

  19. Miranda, C.: Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui. (Italian). Ann. Mat. Pura Appl. 63, 353–386 (1963)

    Google Scholar 

  20. Monneau, R.: On the number of singularities for the obstacle problem in two dimensions. J. Geom. Anal. 13, 359–389 (2003)

    Article  MathSciNet  Google Scholar 

  21. Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of Free Boundaries in Obstacle-Type Problems. Graduate Studies in Mathematics, vol. 136. American Mathematical Society, Providence, (2012)

    Google Scholar 

  22. Uraltseva, N.: Regularity of solutions of variational inequalities. Russian Math. Surveys 42(6), 191–219 (1987)

    Article  MathSciNet  Google Scholar 

  23. Weiss, G.S.: A homogeneity improvement approach to the obstacle problem. Invent. Math. 138, 23–50 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

E. S. has been supported by the ERC-STG Grant no. 759229 HiCoS “Higher Co-dimension Singularities: Minimal Surfaces and the Thin Obstacle Problem.” M. F., F. G. and E. S. are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Focardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Focardi, M., Geraci, F., Spadaro, E. (2021). Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications. In: Mariano, P.M. (eds) Variational Views in Mechanics. Advances in Mechanics and Mathematics(), vol 46. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-90051-9_7

Download citation

Publish with us

Policies and ethics