Skip to main content
Log in

Positive solutions to multi-critical elliptic problems

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we investigate the existence of multiple positive solutions to the following multi-critical elliptic problem

$$\begin{aligned} \left\{ \begin{aligned} -\Delta u&=\lambda |u|^{p-2}u +\sum _{i=1}^k(|x|^{-(N-\alpha _i)}*|u|^{2^*_i})|u|^{2^*_i-2}u\quad \mathrm{in}\quad \Omega ,\\&u\in H^1_0(\Omega )\\ \end{aligned}\right. \end{aligned}$$
(0.1)

in connection with the topology of the bounded domain \(\Omega \subset {\mathbb {R}}^N, \,N\ge 4\), where \(\lambda >0\), \(2^*_i=\frac{N+\alpha _i}{N-2}\) with \(N-4<\alpha _i<N,\ \ i=1,2,\cdot \cdot \cdot , k\) are critical Hardy–Littlewood–Sobolev exponents and \(2<p<2^*=\frac{2N}{N-2}\). We show that there is \(\lambda ^*>0\) such that if \(0<\lambda <\lambda ^*\) problem (0.1) possesses at least \(cat_\Omega (\Omega )\) positive solutions. We also study the existence and uniqueness of positive solutions for the limit problem of (0.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Ding, Y.H.: Multiplicity of positive solutions to a \(p\)-Laplacian equation involving critical nonlinearity. J. Math. Anal. Appl. 279, 508–521 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahri, A., Coron, J.M.: On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253–294 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benci, V., Cerami, G.: Positive solutions of some nonlinear elliptic problems in exterior domains. Arch. Ration. Mech. Anal. 99, 283–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benci, V., Cerami, G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Ration. Mech. Anal. 114, 79–93 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerami, G., Passaseo, D.: Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with rich topology. Nonlinear Anal. 18(2), 109–119 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cerami, G., Passaseo, D.: Existence and multiplicity for semilinear elliptic Dirichlet problems in exterior domains. Nonlinear Anal. 24(11), 1533–1547 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cerami, G., Zhong, X., Zou, W.: On some nonlinear elliptic PDEs with Sobolev–Hardy critical exponents and a Li–Lin open problem. Calc. Var. PDE 54, 1793–1829 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coron, J.M.: Topologie et cas limite des injections de Sobolev. C. R. Ac. Sc. Paris 299, Séries I , 209-212 (1984)

  11. Gao, Z.: Ground states for a nonlinear elliptic equation involving multiple Hardy–Sobolev critical exponents. Adv. Nonlinear Stud. 16, 333–344 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gao, W., Peng, S.: An elliptic equation with combined critical Sobolev–Hardy terms. Nonlinear Anal. 65, 1595–1612 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, F., Yang, M.: The Brezis–Nirenberg type critical problem for the nonlinear Choquard equation. Sci. China Math. 61, 1219–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghimenti, M., Pagliardini, D.: Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc. Var. PDE 58(167), 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Goel, D.: The effect of topology on the number of positive solutions of elliptic equation involving Hardy–Littlewood–Sobolev critical exponent. Top. Methods Nonlinear Anal. 54, 751–771 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Goel, D., Sreenadh, K.: Critical growth elliptic problems involving Hardy–Littlewood–Sobolev critical exponent in non-contractible domains. Adv. Nonlinear Anal. 9, 803–835 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsia, C.-H., Lin, C.-S., Wadade, H.: Revisiting an idea of Brézis and Nirenberg. J. Funct. Anal. 259, 1816–1849 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kang, D., Li, Q.: On the elliptic problems involving multi-singular inverse square potentials and multi-critical Sobolev–Hardy exponents. Nonlinear Anal. 66, 1806–1816 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kazdan, J., Warner, E.W.: Remarks on some quasilinear elliptic equations. Commun. Pure. App. Math. 28, 567–597 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y.Y., Lin, C.-S.: A nonlinear elliptic PDE and two Sobolev–Hardy critical exponents. Arch. Ration. Mech. Anal. 203, 943–968 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moroz, V., Van Schaftingen, J.: Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent. Commun. Contemp. Math. 17, 1550005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. PDE 50, 799–829 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rey, O.: A multiplicity result for a variational problem with lack of compactness. Nonlinear Anal. 13, 1241–1249 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston (1996)

    Google Scholar 

  26. Yang, J., Wu, F.: Doubly critical problems involving fractional Laplacians in \({\mathbb{R} }^N\). Adv. Nonlinear Stud. 17, 677–690 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, M., Zhao, F., Zhao, S.: Classification of solutions to a nonlocal equation with doubly Hardy–Littlewood–Sobolev critical exponents. Dis. Conti. Dyn. Sys. 21, 5209–5241 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhong, X., Zou, W.: A nonlinear elliptic PDE with multiple Hardy–Sobolev critical exponents in \({\mathbb{R} }^N\). J. Differ. Equ. 292, 354–387 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NNSF of China, No: 12171212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Yang, J. & Yu, X. Positive solutions to multi-critical elliptic problems. Annali di Matematica 202, 851–875 (2023). https://doi.org/10.1007/s10231-022-01262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01262-2

Keywords

Mathematics Subject Classification

Navigation