Skip to main content
Log in

Evolutionary mating algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new evolutionary algorithm namely Evolutionary Mating Algorithm (EMA) to solve constrained optimization problems. The algorithm is based on the adoption of random mating concept from Hardy–Weinberg equilibrium and crossover index in order to produce new offspring. In this algorithm, effect of the environmental factor (i.e. the presence of predator) has also been considered and treated as an exploratory mechanism. The EMA is initially tested on the 23 benchmark functions to analyze its effectiveness in finding optimal solutions for different search spaces. It is then applied to Optimal Power Flow (OPF) problems with the incorporation of Flexible AC Transmission Systems (FACTS) devices and stochastic wind power generation. The extensive comparative studies with other algorithms demonstrate that EMA provides better results and can be used in solving real optimization problems from various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kamalova A, Kim KD, Lee SG (2020) Waypoint mobile robot exploration based on biologically inspired algorithms. IEEE Access 8: 190342–190355. https://doi.org/10.1109/ACCESS.2020.3030963

    Article  Google Scholar 

  2. El-Abbasy MS, Elazouni A, Zayed T (2020) Finance-based scheduling multi-objective optimization: benchmarking of evolutionary algorithms. Automat Constr 120: 103392. https://doi.org/10.1016/j.autcon.2020.103392

    Article  Google Scholar 

  3. Khan IU, Qureshi IM, Aziz MA, Cheema TA, Shah SBH (2020) Smart IoT control-based nature inspired energy efficient routing protocol for flying Ad Hoc Network (FANET). IEEE Access 8: 56371–56378. https://doi.org/10.1109/ACCESS.2020.2981531

    Article  Google Scholar 

  4. Khan ZA, Khalid A, Javaid N, Haseeb A, Saba T, Shafiq M (2019) Exploiting nature-inspired-based artificial intelligence techniques for coordinated day-ahead scheduling to efficiently manage energy in smart grid. IEEE Access 7: 140102–140125. https://doi.org/10.1109/ACCESS.2019.2942813

    Article  Google Scholar 

  5. Merikhi B, Soleymani MR (2021) Automatic data clustering framework using nature-inspired binary optimization algorithms. IEEE Access 9: 93703–93722. https://doi.org/10.1109/ACCESS.2021.3091397

    Article  Google Scholar 

  6. Mlakar U, Fister I, Fister I (2020) Impact of solution representation in nature-inspired algorithms for feature selection. IEEE Access 8: 134728–134742. https://doi.org/10.1109/ACCESS.2020.3011153

    Article  Google Scholar 

  7. Nabipour N, Dehghani M, Mosavi A, Shamshirband S (2020) Short-term hydrological drought forecasting based on different nature-inspired optimization algorithms hybridized with artificial neural networks. IEEE Access 8: 15210–15222. https://doi.org/10.1109/ACCESS.2020.2964584

    Article  Google Scholar 

  8. Hejazi T-H (2021) State-dependent resource reallocation plan for health care systems: a simulation optimization approach. Comput Indus Eng 159: 107502. https://doi.org/10.1016/j.cie.2021.107502

    Article  Google Scholar 

  9. Wang M, Huang T, Wong DC, Ho KF, Dong G, Yim SHL (2021) A new approach for health-oriented ozone control strategy: Adjoint-based optimization of NOx emission reductions using metaheuristic algorithms. J Clean Prod 312: 127533. https://doi.org/10.1016/j.jclepro.2021.127533

    Article  Google Scholar 

  10. Jeong G-E, Choi W-S, Cho SS (2021) Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel. Nuclear Eng Technol 53(7): 2268–2276. https://doi.org/10.1016/j.net.2021.01.019

    Article  Google Scholar 

  11. Singh G, Singh A (2021) Extension of particle swarm optimization algorithm for solving transportation problem in fuzzy environment. Appl Soft Comput 110: 107619. https://doi.org/10.1016/j.asoc.2021.107619

    Article  Google Scholar 

  12. Tahani M, Yousefi H, Noorollahi Y, Fahimi R (2019) Application of nature inspired optimization algorithms in optimum positioning of pump-as-turbines in water distribution networks. Neural Comput Appl 31(11): 7489–7499. https://doi.org/10.1007/s00521-018-3566-2

    Article  Google Scholar 

  13. Rizk-Allah RM, Hassanien AE, Elhoseny M, Gunasekaran M (2019) A new binary salp swarm algorithm: development and application for optimization tasks. Neural Comput Appl 31(5): 1641–1663. https://doi.org/10.1007/s00521-018-3613-z

    Article  Google Scholar 

  14. Ates A (2021) Enhanced equilibrium optimization method with fractional order chaotic and application engineering. Neural Comput Appl 33(16): 9849–9876. https://doi.org/10.1007/s00521-021-05756-7

    Article  Google Scholar 

  15. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning

  16. Haupt RL, Haupt SE (2004) Practical Genetic Algorithms, 2nd ed. Wiley

  17. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1): 687–697. https://doi.org/10.1016/j.asoc.2007.05.007

    Article  Google Scholar 

  18. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4): 341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  19. Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4(2): 87–112. https://doi.org/10.1007/BF00175355

    Article  Google Scholar 

  20. Fogel L (1999) Intelligence through simulated evolution: forty years of evolutionary programming

  21. Rechenberg I (1978) Evolutionsstrategien. In: Schneider B, Ranft U (eds) Simulationsmethoden in der Medizin und Biologie. Springer, Berlin Heidelberg, pp 83–114

    Chapter  Google Scholar 

  22. Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Carnegie Mellon University

  23. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6): 702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  24. Dasgupta D (1997) Optimal scheduling of thermal power generation using evolutionary algorithms. In: Dasgupta D, Michalewicz Z (eds) Evolutionary algorithms in engineering applications. Springer, Berlin, Heidelberg, pp 317–328

    Chapter  Google Scholar 

  25. Rechenberg I (2000) Case studies in evolutionary experimentation and computation. Comput Methods Appl Mech Eng 186(2): 125–140. https://doi.org/10.1016/S0045-7825(99)00381-3

    Article  MATH  Google Scholar 

  26. Streckenbach J, Koref IS, Rechenberg I, Uhlmann E (2020) Optimization with the evolution strategy by example of electrical-discharge drilling. Neurocomputing 391: 318–324. https://doi.org/10.1016/j.neucom.2019.02.073

    Article  Google Scholar 

  27. Zeng Z, Zhang M, Chen T, Hong Z (2021) A new selection operator for differential evolution algorithm. Knowl Based Syst 226: 107150. https://doi.org/10.1016/j.knosys.2021.107150

    Article  Google Scholar 

  28. Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11): 815–834. https://doi.org/10.1007/s00500-004-0422-3

    Article  MATH  Google Scholar 

  29. Yuan D, Zhang D, Yang Y, Yang S (2022) Automatic construction of filter tree by genetic programming for ultrasound guidance image segmentation. Biomed Signal Process Control 76: 103641. https://doi.org/10.1016/j.bspc.2022.103641

    Article  Google Scholar 

  30. Neveux T (2018) Ab-initio process synthesis using evolutionary programming. Chem Eng Sci 185:209–221. https://doi.org/10.1016/j.ces.2018.04.015

    Article  Google Scholar 

  31. Kotary DK, Nanda SJ, Gupta R (2021) A many-objective whale optimization algorithm to perform robust distributed clustering in wireless sensor network. Appl Soft Comput 110: 107650. https://doi.org/10.1016/j.asoc.2021.107650

    Article  Google Scholar 

  32. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the sixth international symposium on micro machine and human science, pp. 39-43. https://doi.org/10.1109/MHS.1995.494215

  33. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Comput Intell Mag IEEE 1(4): 28–39

    Article  Google Scholar 

  34. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization

  35. Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Pham DT, Eldukhri EE, Soroka AJ (eds) Intelligent production machines and systems. Elsevier Science Ltd, Oxford, pp 454–459

    Chapter  Google Scholar 

  36. Jiang Y, Tsai P, Yeh W-C, Cao L (2017) A honey-bee-mating based algorithm for multilevel image segmentation using Bayesian theorem. Appl Soft Comput 52: 1181–1190. https://doi.org/10.1016/j.asoc.2016.09.008

    Article  Google Scholar 

  37. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf optimizer. Adv Eng Softw 69: 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  38. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89: 228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  39. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114: 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  40. Sulaiman MH, Mustaffa Z, Saari MM, Daniyal H (2020) Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng Appl Artif Intell 87: 103330. https://doi.org/10.1016/j.engappai.2019.103330

    Article  Google Scholar 

  41. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95: 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  42. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152: 113377. https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  43. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13): 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  44. Bouchekara H (2020) Solution of the optimal power flow problem considering security constraints using an improved chaotic electromagnetic field optimization algorithm. Neural Comput Appl 32(7): 2683–2703. https://doi.org/10.1007/s00521-019-04298-3

    Article  Google Scholar 

  45. Abedinpourshotorban H, Mariyam Shamsuddin S, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evolut Comput 26: 8–22. https://doi.org/10.1016/j.swevo.2015.07.002

    Article  Google Scholar 

  46. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3): 303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  47. Rao RV, Savsani VJ, Vakharia DP (2012) Teaching–Learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183(1): 1–15. https://doi.org/10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

  48. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36): 3902–3933. https://doi.org/10.1016/j.cma.2004.09.007

    Article  MATH  Google Scholar 

  49. Carranza J (2000) Environmental effects on the evolution of mating systems in endotherms. In: Vertebrate mating systems, pp 106–139

  50. Okada K et al (2021) Natural selection increases female fitness by reversing the exaggeration of a male sexually selected trait. Nat Commun 12(1): 3420. https://doi.org/10.1038/s41467-021-23804-7

    Article  Google Scholar 

  51. Green JP, Freckleton RP, Hatchwell BJ (2016) Variation in helper effort among cooperatively breeding bird species is consistent with Hamilton’s Rule (in eng). Nat Commun 7: 12663. https://doi.org/10.1038/ncomms12663

    Article  Google Scholar 

  52. Fattoruso V, Anfora G, Mazzoni V (2021) Vibrational communication and mating behavior of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Sci Rep 11(1): 6543. https://doi.org/10.1038/s41598-021-85904-0

    Article  Google Scholar 

  53. Shuster SM (2009) Sexual selection and mating systems. Proc Natl Acad Sci 106(Supplement 1):10009–10016. https://doi.org/10.1073/pnas.0901132106

    Article  Google Scholar 

  54. Hubbell SP, Johnson LK (1987) Environmental variance in lifetime mating success, mate choice, and sexual selection. Am Nat 130(1): 91–112. https://doi.org/10.1086/284700

    Article  Google Scholar 

  55. Lachance J (2016) Hardy–Weinberg equilibrium and random mating. In: Kliman RM (ed) Encyclopedia of evolutionary biology. Academic Press, Oxford, pp 208–211

    Chapter  Google Scholar 

  56. Crow JF (1999) Hardy, Weinberg and language impediments. (in eng). Genetics 152(3): 821–825. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/10388804. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1460671/

  57. Guo SW, Thompson EA (1992) Performing the exact test of hardy-weinberg proportion for multiple alleles. Biometrics 48(2): 361–372. https://doi.org/10.2307/2532296

    Article  MATH  Google Scholar 

  58. Sulaiman MH et al (2018) Barnacles mating optimizer: a bio-inspired algorithm for solving optimization problems. In: 2018 19th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp 265–270. https://doi.org/10.1109/SNPD.2018.8441097.

  59. Sulaiman MH, Mustaffa Z, Saari MM, Daniyal H, Musirin I, Daud MR (2018) Barnacles mating optimizer: an evolutionary algorithm for solving optimization. In: 2018 IEEE international conference on automatic control and intelligent systems (I2CACIS), pp 99–104. https://doi.org/10.1109/I2CACIS.2018.8603703

  60. Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8(1): 22–34. https://doi.org/10.1080/21642583.2019.1708830

    Article  Google Scholar 

  61. Salleh MNM et al (2018) Exploration and exploitation measurement in swarm-based metaheuristic algorithms: an empirical analysis Cham, 2018: Springer International Publishing. In: Recent advances on soft computing and data mining pp 24–32

  62. Price KV, Awad NH, Ali MZ, Suganthan PN (2018) Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. In: Technical Report, Nanyang Technological University, Singapore, 2018

  63. Biswas PP, Arora P, Mallipeddi R, Suganthan PN, Panigrahi BK (2021) Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network. Neural Comput Appl 33(12): 6753–6774. https://doi.org/10.1007/s00521-020-05453-x

    Article  Google Scholar 

  64. Al-Roomi AR (2015) Power flow test systems repository. Dalhousie University, Electrical and Computer Engineering, Halifax, Nova Scotia, Canada. [Online]. Available: https://al-roomi.org/power-flow

  65. Biswas PP, Suganthan PN, Amaratunga GAJ (2017) Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers Manag 148: 1194–1207. https://doi.org/10.1016/j.enconman.2017.06.071

    Article  Google Scholar 

  66. Sulaiman MH, Mustaffa Z (2021) Solving optimal power flow problem with stochastic wind–solar–small hydro power using barnacles mating optimizer. Control Eng Pract 106: 104672. https://doi.org/10.1016/j.conengprac.2020.104672

    Article  Google Scholar 

  67. Sulaiman MH, Mustaffa Z (2020) Optimal power flow incorporating stochastic wind and solar generation by metaheuristic optimizers. Microsyst Technol. https://doi.org/10.1007/s00542-020-05046-7

    Article  Google Scholar 

  68. Zimmerman RD, Murillo-Sánchez CE, Thomas RJ (2011) MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 26(1):12–19. https://doi.org/10.1109/TPWRS.2010.2051168

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education Malaysia (MOE) under Fundamental Research Grant Scheme (FRGS/1/2022/ICT04/UMP/02/1) and Universiti Malaysia Pahang (#RDU220105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Herwan Sulaiman.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, M.H., Mustaffa, Z., Saari, M.M. et al. Evolutionary mating algorithm. Neural Comput & Applic 35, 487–516 (2023). https://doi.org/10.1007/s00521-022-07761-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07761-w

Keywords

Navigation