Skip to main content
Log in

Solution of the optimal power flow problem considering security constraints using an improved chaotic electromagnetic field optimization algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The main objective of this paper is to solve different configurations of the optimal power flow (OPF) problem efficiently using an improved version of the newly proposed electromagnetic field optimization (EFO) algorithm. The developed and improved new version of EFO is based on chaotic maps and on a new mechanism. This improved version is called improved chaotic electromagnetic field optimization (ICEFO) algorithm. The performances of the ICEFO algorithm are evaluated on a large set of cases using: tow formulations, three objective functions (cost minimization, cost minimization and voltage profile improvement and cost minimization and voltage stability enhancement) and three test systems (the IEEE 30-bus, the IEEE 57-bus and the IEEE 118-bus test systems). The obtained results of the developed algorithm are compared with other well-known algorithms. These results demonstrate that the developed algorithm is able to solve efficiently different configurations of the OPF problem and for different test systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Roy PK, Ghoshal SP, Thakur SS (2010) Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function. Expert Syst Appl 37:8221–8228. https://doi.org/10.1016/j.eswa.2010.05.064

    Article  Google Scholar 

  2. Ghasemi M, Ghavidel S, Ghanbarian MM, Gharibzadeh M, Azizi Vahed A (2014) Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy 78:276–289. https://doi.org/10.1016/j.energy.2014.10.007

    Article  Google Scholar 

  3. Hazra J, Sinha AK (2010) A multi-objective optimal power flow using particle swarm optimization. https://doi.org/10.1002/etep

  4. Fonoberova M (2010) Handbook of power systems II, networks. https://doi.org/10.1007/978-3-642-12686-4

  5. Niu M, Wan C, Xu Z (2014) A review on applications of heuristic optimization algorithms for optimal power flow in modern power systems. J Mod Power Syst Clean Energy 2:289–297. https://doi.org/10.1007/s40565-014-0089-4

    Article  Google Scholar 

  6. Frank S, Steponavice I (2012) Optimal power flow: a bibliographic survey I. Formulations and deterministic methods. Energy Syst 3:221–258. https://doi.org/10.1007/s12667-012-0056-y

    Article  Google Scholar 

  7. Frank S, Steponavice I, Rebennack S (2012) Optimal power flow: a bibliographic survey II. Non-deterministic and hybrid methods. Energy Syst 3:259–289. https://doi.org/10.1007/s12667-012-0057-x

    Article  Google Scholar 

  8. AlRashidi MR, El-Hawary ME (2009) Applications of computational intelligence techniques for solving the revived optimal power flow problem. Electr Power Syst Res 79:694–702. https://doi.org/10.1016/j.epsr.2008.10.004

    Article  Google Scholar 

  9. Yuryevich J (1999) Evolutionary programming based optimal power flow algorithm. IEEE Trans Power Syst 14:1245–1250. https://doi.org/10.1109/59.801880

    Article  Google Scholar 

  10. Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V (2002) Optimal power flow by enhanced genetic algorithm. IEEE Trans Power Syst 17:229–236. https://doi.org/10.1109/TPWRS.2002.1007886

    Article  Google Scholar 

  11. Lai LL, Ma JT, Yokoyama R, Zhao M (1997) Improved genetic algorithms for optimal power flow under both normal and contingent operation states. Int J Electr Power Energy Syst 19:287–292. https://doi.org/10.1016/S0142-0615(96)00051-8

    Article  Google Scholar 

  12. Paranjothi SR, Anburaja K (2002) Optimal power flow using refined genetic algorithm. Electr Power Compon Syst 30:1055–1063. https://doi.org/10.1080/15325000290085343

    Article  Google Scholar 

  13. Younes M, Rahli M, Abdelhakem-Koridak L (2007) Optimal power flow based on hybrid genetic algorithm. J Inf Sci Eng 23:1801–1816

    Google Scholar 

  14. Todorovski M, Rajičić D (2006) An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Trans Power Syst 21:480–487. https://doi.org/10.1109/TPWRS.2006.873120

    Article  Google Scholar 

  15. Bouchekara HREH, Chaib AE, Abido MA (2016) Optimal power flow using GA with a new multi-parent crossover considering: prohibited zones, valve-point effect, multi-fuels and emission. Electr Eng. https://doi.org/10.1007/s00202-016-0488-9

    Article  Google Scholar 

  16. Abido MA (2002) Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 24:563–571. https://doi.org/10.1016/S0142-0615(01)00067-9

    Article  Google Scholar 

  17. Hinojosa VH, Araya R (2013) Modeling a mixed-integer-binary small-population evolutionary particle swarm algorithm for solving the optimal power flow problem in electric power systems. Appl Soft Comput 13:3839–3852. https://doi.org/10.1016/j.asoc.2013.05.005

    Article  Google Scholar 

  18. Kang Q, Zhou M, Xu C (2012) Solving optimal power flow problems subject to distributed generator failures via particle swarm intelligence. In: Adv. Mechatron. Syst. (ICAMechS), 2012 Int. Conf., pp 418–423

  19. Umapathy P, Venkataseshaiah C, Arumugam MS (2010) Particle swarm optimization with various inertia weight variants for optimal power flow solution. Discrete Dyn Nat Soc. https://doi.org/10.1155/2010/462145

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang R-H, Tsai S-R, Chen Y-T, Tseng W-T (2011) Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr Power Syst Res 81:1466–1474. https://doi.org/10.1016/j.epsr.2011.02.011

    Article  Google Scholar 

  21. Tehzeeb-Ul-Hassan H, Zafar R, Mohsin SA, Lateef O (2012) Reduction in power transmission loss using fully informed particle swarm optimization. Int J Electr Power Energy Syst 43:364–368. https://doi.org/10.1016/j.ijepes.2012.05.028

    Article  Google Scholar 

  22. Abido MA (2002) Optimal power flow using tabu search algorithm. Electr Power Compon Syst 30:469–483. https://doi.org/10.1080/15325000252888425

    Article  Google Scholar 

  23. Roa-Sepulveda CA, Pavez-Lazo BJ (2003) A solution to the optimal power flow using simulated annealing. Int J Electr Power Energy Syst 25:47–57. https://doi.org/10.1016/S0142-0615(02)00020-0

    Article  Google Scholar 

  24. Abou El Ela AA, Abido MA, Spea SR (2010) Optimal power flow using differential evolution algorithm. Electr Power Syst Res 80:878–885. https://doi.org/10.1016/j.epsr.2009.12.018

    Article  Google Scholar 

  25. Chung CY, Liang CH, Wong KP, Duan XZ (2010) Hybrid algorithm of differential evolution and evolutionary programming for optimal reactive power flow. IET Gener Transm Distrib 4(1):84–93. https://doi.org/10.1049/iet-gtd.2009.0007

    Article  Google Scholar 

  26. Sivasubramani S, Swarup KS (2011) Sequential quadratic programming based differential evolution algorithm for optimal power flow problem. IET Gener Transm Distrib 5:1149. https://doi.org/10.1049/iet-gtd.2011.0046

    Article  Google Scholar 

  27. Sayah S, Zehar K (2008) Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers Manag 49:3036–3042. https://doi.org/10.1016/j.enconman.2008.06.014

    Article  Google Scholar 

  28. Slimani L, Bouktir T (2012) Optimal power flow solution of the Algerian electrical network using differential evolution algorithm. TELKOMNIKA 10:199–210

    Article  Google Scholar 

  29. Amjady N, Sharifzadeh H (2011) Security constrained optimal power flow considering detailed generator model by a new robust differential evolution algorithm. Electr Power Syst Res 81:740–749. https://doi.org/10.1016/j.epsr.2010.11.005

    Article  Google Scholar 

  30. Bhattacharya A, Chattopadhyay PK (2011) Application of biogeography-based optimisation to solve different optimal power flow problems. IET Gener Transm Distrib 5:70. https://doi.org/10.1049/iet-gtd.2010.0237

    Article  Google Scholar 

  31. Ghanizadeh AJ, Mokhtari G, Abedi M, Gharehpetian GB (2011) Optimal power flow based on imperialist competitive algorithm. Int Rev Electr Eng 6:1847–1852

    Google Scholar 

  32. Bouchekara HREH, Abido MA, Chaib AE, Mehasni R (2014) Optimal power flow using the league championship algorithm: a case study of the Algerian power system. Energy Convers Manag 87:58–70. https://doi.org/10.1016/j.enconman.2014.06.088

    Article  Google Scholar 

  33. Bouchekara HREH (2014) Optimal power flow using black-hole-based optimization approach. Appl Soft Comput J 24:879–888. https://doi.org/10.1016/j.asoc.2014.08.056

    Article  Google Scholar 

  34. Bouchekara HREH, Abido MA, Boucherma M (2014) Optimal power flow using teaching–learning-based optimization technique. Electr Power Syst Res 114:49–59. https://doi.org/10.1016/j.epsr.2014.03.032

    Article  Google Scholar 

  35. Ghasemi M, Ghavidel S, Gitizadeh M, Akbari E (2015) An improved teaching-learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow. Int J Electr Power Energy Syst 65:375–384. https://doi.org/10.1016/j.ijepes.2014.10.027

    Article  Google Scholar 

  36. Bouchekara HRE-H, Abido MA (2014) Optimal power flow using differential search algorithm. Electr Power Compon Syst 42:1683–1699. https://doi.org/10.1080/15325008.2014.949912

    Article  Google Scholar 

  37. Bouchekara HREH, Chaib AE, Abido MA, El-Sehiemy RA (2016) Optimal power flow using an improved colliding bodies optimization algorithm. Appl Soft Comput J 42:119–131. https://doi.org/10.1016/j.asoc.2016.01.041

    Article  Google Scholar 

  38. Bouchekara HREH, Abido MA, Chaib AE (2016) Optimal power flow using an improved electromagnetism-like mechanism method. Electr Power Compon Syst 44:434–449. https://doi.org/10.1080/15325008.2015.1115919

    Article  Google Scholar 

  39. Chaib AE, Bouchekara HREH, Mehasni R, Abido MA (2016) Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm. Int J Electr Power Energy Syst 81:64–77. https://doi.org/10.1016/j.ijepes.2016.02.004

    Article  Google Scholar 

  40. Mohamed A-AA, Mohamed YS, El-Gaafary AAM, Hemeida AM (2017) Optimal power flow using moth swarm algorithm. Electr Power Syst Res 142:190–206. https://doi.org/10.1016/j.epsr.2016.09.025

    Article  Google Scholar 

  41. Daryani N, Hagh MT, Teimourzadeh S (2016) Adaptive group search optimization algorithm for multi-objective optimal power flow problem. Appl Soft Comput 38:1012–1024. https://doi.org/10.1016/j.asoc.2015.10.057

    Article  Google Scholar 

  42. Mahdad B, Srairi K (2016) Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm. Appl Soft Comput 46:501–522. https://doi.org/10.1016/j.asoc.2016.05.027

    Article  Google Scholar 

  43. Panda A, Tripathy M (2015) Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm. Energy 93:816–827. https://doi.org/10.1016/j.energy.2015.09.083

    Article  Google Scholar 

  44. Warid W, Hizam H, Mariun N, Abdul-Wahab N (2016) Optimal power flow using the Jaya algorithm. Energies 9:678. https://doi.org/10.3390/en9090678

    Article  Google Scholar 

  45. Berrouk F, Chaib AE, Abido MA, Bounaya K, Javaid MS (2018) A new multi-objective Jaya algorithm for solving the optimal power flow problem. J Electr Syst 14(3):165–181

    Google Scholar 

  46. Kaveh A (2014) Advances in metaheuristic algorithms for optimal design of structures. https://doi.org/10.1007/978-3-319-05549-7

  47. Mukherjee A, Mukherjee V (2015) Solution of optimal power flow using chaotic krill herd algorithm. Chaos Solitons Fractals 78:10–21. https://doi.org/10.1016/j.ijepes.2015.12.001

    Article  MathSciNet  Google Scholar 

  48. Yuan X, Wang P, Yuan Y, Huang Y, Zhang X (2015) A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem. Energy Convers Manag 100:1–9. https://doi.org/10.1016/j.enconman.2015.04.051

    Article  Google Scholar 

  49. Polprasert J, Ongsakul W (2014) Chaotic based PSO with time-varying acceleration coefficients for security constrained optimal power flow problem, pp 19–21

  50. Ayan K, Kılıç U, Baraklı B (2015) Chaotic artificial bee colony algorithm based solution of security and transient stability constrained optimal power flow. Int J Electr Power Energy Syst 64:136–147. https://doi.org/10.1016/j.ijepes.2014.07.018

    Article  Google Scholar 

  51. Ghasemi M, Ghavidel S, Akbari E, Vahed AA (2014) Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos. Energy 73:340–353. https://doi.org/10.1016/j.energy.2014.06.026

    Article  Google Scholar 

  52. Arul R, Ravi G, Velusami S (2013) Solving optimal power flow problems using chaotic self-adaptive differential harmony search algorithm. Electr Power Compon Syst 41:782–805. https://doi.org/10.1080/15325008.2013.769033

    Article  Google Scholar 

  53. Abedinpourshotorban H, Mariyam Shamsuddin S, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8–22. https://doi.org/10.1016/j.swevo.2015.07.002

    Article  Google Scholar 

  54. Kessel P, Glavitsch H (1986) Estimating the voltage stability of a power system. IEEE Trans Power Deliv 1:346–354. https://doi.org/10.1109/TPWRD.1986.4308013

    Article  Google Scholar 

  55. Stehlík M, Dušek J, Kiseľák J (2016) Missing chaos in global climate change data interpreting? Ecol Complex 25:53–59. https://doi.org/10.1016/j.ecocom.2015.12.003

    Article  Google Scholar 

  56. Lu H, Wang X, Fei Z, Qiu M (2014) The effects of using chaotic map on improving the performance of multiobjective evolutionary algorithms. Math Probl Eng. https://doi.org/10.1155/2014/924652

    Article  MathSciNet  MATH  Google Scholar 

  57. Naanaa A (2015) Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization. Appl Math Comput 269:402–411. https://doi.org/10.1016/j.amc.2015.07.111

    Article  MathSciNet  MATH  Google Scholar 

  58. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18:89–98. https://doi.org/10.1016/j.cnsns.2012.06.009

    Article  MathSciNet  MATH  Google Scholar 

  59. OPF PROBLEMS https://www.uni-due.de/ieee-wgmho/competition2014 (n.d.)

  60. Zimmerman RD, Murillo-Sánchez CE (2016) MATPOWER. http://www.pserc.cornell.edu/matpower/#docs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssem Bouchekara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 8, 9 and 10.

Table 8 Full optimal results found using ICEFO for CASE 1 through CASE 4
Table 9 Full optimal results found using ICEFO for CASE 5 through CASE 8
Table 10 Full optimal results found using ICEFO for CASE 9 through CASE 12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchekara, H. Solution of the optimal power flow problem considering security constraints using an improved chaotic electromagnetic field optimization algorithm. Neural Comput & Applic 32, 2683–2703 (2020). https://doi.org/10.1007/s00521-019-04298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04298-3

Keywords

Navigation