Skip to main content

Optimal Scheduling of Thermal Power Generation Using Evolutionary Algorithms

  • Chapter
Evolutionary Algorithms in Engineering Applications

Summary

The optimal scheduling of power generation is a major problem in Electricity generating industry. This scheduling problem is complex because of many constraints which can not be violated while finding optimal or near-optimal scheduling. A real-time scheduling of generating units involves the selection of units for for operation to meet the consumer requirement. These decisions are to be taken so as to minimize the sum of startup, banking and expected running costs subject to the demand and spinning_reserve, and satisfying the minimum down-time and up-time constraints of generating units. So the objective of the scheduling is to generate power to meet the load with minimum cost of generation. We tackled the problem with heuristic knowledge (load forecast) and genetic search technique. The paper examines the feasibility of using genetic algorithms, and reports results in determining a near-optimal commitment order of thermal units in a studied power system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. F. B. Baptistella and J. C. Geromel. A decomposition approach to problem of unit commitment schedule for hydrothermal systems. IEE Proceedings- Part-C, 127(6):250–258, November 1980.

    Article  MathSciNet  Google Scholar 

  2. Jonathan F. Bard. Short-Term Scheduling of Thermal-Electric Generators using Lagrangian Relaxation. Operations Research, 36(5):756–766, Sept/Oct. 1988.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. B. Booker. Intelligent behavior as an adaptation to the task environment. PhD thesis, Computer Science, University of Michigan, Ann Arbor, U. S. A, 1982.

    Google Scholar 

  4. Arthur I. Cohen and Miki Yoshimura. A Branch-and-Bound Algorithm for Unit Commitment. IEEE Transactions on Power Apparatus and Systems., PAS102(2):444–449, February 1983.

    Article  Google Scholar 

  5. Yuval Davidor. Epistasis Variance: Suitability of a Representation to Genetic Algorithms. Complex Systems, 4:369–383, 1990.

    Google Scholar 

  6. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley., first edition, 1989.

    MATH  Google Scholar 

  7. David E. Goldberg. Sizing populations for serial and parallel genetic algorithms. In International Conference on Genetic Algorithms (ICGA-89), pages 70–79, 1989.

    Google Scholar 

  8. A. R. Hamdam and K. Mohamed-Nor. Integrating an expert system into a thermal unit-commitment algorithm. IEE Proceedings-C, 138(6):553–559, November 1991.

    Google Scholar 

  9. W. J. Hobbs, G. Hermon, S. Warner, and G. B. Sheble. An Advanced Dynamic Programming approach for Unit Commitment. IEEE Transactions on Power Systems, 3(3):1201–1205, August 1988.

    Article  Google Scholar 

  10. John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan press, Ann Arbor, 1975.

    Google Scholar 

  11. Fred N. Lee. The application of commitment utilization factor (CUF) to thermal unit commitment. IEEE Transactions on Power Systems., 6(2):691–698, May 1991.

    Article  Google Scholar 

  12. P. G. Lowery. Generating Unit Commitment by Dynamic Programming. IEEE Transactions on Power Apparatus and Systems, PAS-85(5):422–426, May 1966.

    Article  Google Scholar 

  13. A. Merlin and P. Sandrin. A New Method for Unit Commitment at Electricité de France. IEEE Transactions on Power Apparatus and Systems, PAS102(5):1218–1225, May 1983.

    Article  Google Scholar 

  14. John A. Muckstadt and Sherri A. Koenig. An Application of Lagrangian Relaxation to Scheduling in Power Generation Systems. Operations Research, 25(1):387–403, Jan/Feb 1977.

    Article  MATH  Google Scholar 

  15. Sasan Mukhtari, Jagjit Singh, and Bruce Wollenberg. A Unit Commitment Expert System. IEEE Transactions on Power Systems, 3(1):272–277, February 1988.

    Article  Google Scholar 

  16. Z. Ouyang and S. M. Shahidehpour. An Intelligent Dynamic Programming for Unit Commitment Application. IEEE Transactions on Power Systems, August 6(3):1203–1209, Augus 1991.

    Article  Google Scholar 

  17. Z. Ouyang and S. M. Shahidehpour. A Hybrid Artificial Neural Network. Dynamic Programming approach to Unit Commitment. IEEE Transactions on Power Systems, 7(1):236–242, February 1992.

    Article  Google Scholar 

  18. C. K. Pang and H. C. Chen. Optimal Short-term Thermal Unit Commitment. IEEE Transaction on Power Apparatus and Systems, PAS-95(4):1336–1346, July/August 1976.

    Article  Google Scholar 

  19. C. K. Pang, G. B. Sheble’, and F. Albuyeh. Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments. IEEE Transactions on Power Apparatus and Systems, PAS-100(3):1212–1218, March 1981.

    Article  Google Scholar 

  20. S. K. Tong, S. M. Shahidehpour, and Z. Ouyang. A Heuristic Short-term Unit Commitment. IEEE Transactions on Power Systems, 6(3):1210–1216, August 1991.

    Article  Google Scholar 

  21. F. Zhuang and F. D. Galiana. Unit Commitment by Simulated Annealing. IEEE Transactions on Power Systems, 5(1):311–317, February 1990.

    Article  Google Scholar 

  22. Fulin Zhuang and F. D. Galiana. Towards a more rigorous and practical Unit Commitment by Lagrangian Relaxation. IEEE Transactions on Power Systems, 3(2):763–773, May 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dasgupta, D. (1997). Optimal Scheduling of Thermal Power Generation Using Evolutionary Algorithms. In: Dasgupta, D., Michalewicz, Z. (eds) Evolutionary Algorithms in Engineering Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03423-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03423-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08282-5

  • Online ISBN: 978-3-662-03423-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics