Skip to main content

Advertisement

Log in

Nuclear Fission–Nuclear Fusion algorithm for global optimization: a modified Big Bang–Big Crunch algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study introduces a derivative of the well-known optimization algorithm, Big Bang–Big Crunch (BB–BC), named Nuclear Fission–Nuclear Fusion-based BB–BC, simply referred to as N2F. Broadly preferred in the engineering optimization community, BB–BC provides accurate solutions with reasonably fast convergence rates for many engineering problems. Regardless, the algorithm often suffers from stagnation issues. More specifically, for some problems, BB–BC either converges prematurely or exploits the promising regions inefficiently, both of which prevent obtaining the optimal solution. To overcome such problems, N2F algorithm is proposed, inspired by two major phenomena of nuclear physics: fission and fusion reactions. In N2F, two concepts named “Nuclear Fission” and “Nuclear Fusion” are introduced, replacing the “Big Bang” and “Big Crunch” phases of BB–BC, respectively. With the “Nuclear Fission” phase represented through a parameter named amplification factor, premature convergence issues are eliminated to a great extent. Meanwhile, convergence rate and exploitation capability of the algorithm are enhanced largely through a precision control parameter named magnification factor, in the “Nuclear Fusion” phase. The performance of N2F algorithm is investigated through unconstrained test functions and compared with the conventional BB–BC and other metaheuristics including genetic algorithm, Particle Swarm Optimization (PSO), Artificial Bee Colony Optimization (ABC), Drone Squadron Optimization (DSO) and Salp Swarm Algorithm (SSA). Then, further analyses are performed with constrained design benchmarks, validating the applicability of N2F to engineering problems. With superior statistical performance compared to BB–BC, GA, PSO, ABC, DSO and SSA in unconstrained problems and improved results with respect to the literature studies, N2F is proven to be an efficient and robust optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rao RV, Savsani VJ (2012) Mechanical design optimization using advanced optimization techniques. Springer, London

    Book  Google Scholar 

  2. Dréo J, Pétrowski A, Siarry P (2006) Metaheuristics for hard optimization: methods and case studies. Springer, Berlin

    MATH  Google Scholar 

  3. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Engrg 194(36–38):3902–3933. https://doi.org/10.1016/j.cma.2004.09.007

    Article  MATH  Google Scholar 

  4. Camp CV (2007) Design of space trusses using Big Bang-Big Crunch optimization. J Struct Eng 133(7):999–1008. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)

    Article  Google Scholar 

  5. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using Firefly algorithm. Comput Struct 89(23-24):2325–2336. https://doi.org/10.1016/j.compstruc.2011.08.002

    Article  Google Scholar 

  6. Hasançebi O, Teke T, Pekcan O (2013) A bat-inspired algorithm for structural optimization. Comput Struct 128:77–90. https://doi.org/10.1016/j.compstruc.2013.07.006

    Article  Google Scholar 

  7. Salomon R (1998) Evolutionary algorithms and gradient search: similarities and differences. IEEE Trans Evol Comput 2(2):45–55. https://doi.org/10.1109/4235.728207

    Article  Google Scholar 

  8. Xiong N, Molina D, Ortiz ML, Herrera F (2015) A walk into metaheuristics for engineering optimization: principles, methods and recent trends. Int J Comput Intell Syst 8(4):606–636. https://doi.org/10.1080/18756891.2015.1046324

    Article  Google Scholar 

  9. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117. https://doi.org/10.1016/j.ins.2013.02.041

    Article  MathSciNet  MATH  Google Scholar 

  10. Holland JH (1975) Adaptation in natural and artificial systems—an introductory analysis with applications to biology, control, and artificial intelligence. The University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  11. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  12. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  13. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549. https://doi.org/10.1016/0305-0548(86)90048-1

    Article  MathSciNet  MATH  Google Scholar 

  14. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. MHS95. In: Proceedings of the sixth international symposium on micro machine and human science pp 39–43. https://doi.org/10.1109/mhs.1995.494215

  15. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, London

    Book  Google Scholar 

  16. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department

  17. Yang XS (2010) A new metaheuristic bat-inspired algorithm. Stud Comput Intell 284:65–74. https://doi.org/10.1007/978-3-642-12538-6_6

    Article  MATH  Google Scholar 

  18. Yang X, Deb S (2009) Cuckoo search via levy flights. In: Proceedings of 2009 world congress on nature and biologically inspired computing, pp 210–214. https://doi.org/10.1109/nabic.2009.5393690

  19. Yang XS (2012) Flower pollination algorithm for global optimization. In: Proceedings of 11th international conference on unconventional computation and natural computation, pp 240–249. https://doi.org/10.1007/978-3-642-32894-7_27

  20. Chakraborty D, Saha S, Dutta O (2014) DE-FPA: a hybrid differential evolution-flower pollination algorithm for function minimization. In: Proceedings of 2014 international conference on high performance computing and applications. https://doi.org/10.1109/ichpca.2014.7045350

  21. Kumar R (2014) Directed bee colony optimization algorithm. Swarm Evol Comput 17:60–73. https://doi.org/10.1016/j.swevo.2014.03.001

    Article  Google Scholar 

  22. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  23. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53:1168–1183. https://doi.org/10.1016/j.isatra.2014.03.018

    Article  Google Scholar 

  24. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput J 31:153–171. https://doi.org/10.1016/j.asoc.2015.03.003

    Article  Google Scholar 

  25. Savsani P, Savsani V (2016) Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl Math Model 40(5-6):3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  MATH  Google Scholar 

  26. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  27. de Melo VV, Banzhaf W (2017) Drone squadron optimization: a novel self-adaptive algorithm for global numerical optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2881-3

    Article  Google Scholar 

  28. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp Swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  29. Erol OK, Eksin I (2006) A new optimization method: Big Bang-Big Crunch. Adv Eng Softw 37(2):106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005

    Article  Google Scholar 

  30. Yoo CH, Lim DK, Jung HK (2016) A novel multimodal optimization algorithm for the design of electromagnetic machines. IEEE Trans Magn 52(3):1–4. https://doi.org/10.1109/TMAG.2015.2478060

    Article  Google Scholar 

  31. Ahmadi S, Abdi Sh (2015) Optimal reconfiguration of unbalanced distribution systems using a new hybrid Big Bang-Big Crunch algorithm for loss reduction. In: 20th Conference on electrical power distribution networks conference (EPDC), pp 53–59. https://doi.org/10.1109/epdc.2015.7330473

  32. Esmaeili M, Sedighizadeh M, Esmaili M (2016) Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty. Energy 103:86–99. https://doi.org/10.1016/j.energy.2016.02.152

    Article  Google Scholar 

  33. Sedighizadeh M, Bakhtiary R (2016) Optimal multi-objective reconfiguration and capacitor placement of distribution systems with the Hybrid Big Bang-Big Crunch algorithm in the fuzzy framework. Ain Shams Eng J 7(1):113–129. https://doi.org/10.1016/j.asej.2015.11.018

    Article  Google Scholar 

  34. Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang-Big Crunch algorithm. Comput Struct 87(17-18):1129–1140. https://doi.org/10.1016/j.compstruc.2009.04.011

    Article  Google Scholar 

  35. Kazemzadeh Azad S, Hasançebi O, Erol OK (2011) Evaluating efficiency of big-bang big-crunch algorithm in benchmark engineering optimization problems. Int J Optim Civ Eng 3:495–505

    Google Scholar 

  36. Hasançebi O, Kazemzadeh Azad S (2012) An exponential big bang-big crunch algorithm for discrete design optimization of steel frames. Comput Struct 110–111:167–179. https://doi.org/10.1016/j.compstruc.2012.07.014

    Article  Google Scholar 

  37. Hasançebi O, Kazemzadeh Azad S (2013) Discrete size optimization of steel trusses using a refined big bang–big crunch algorithm. Eng Optim 46(1):61–83. https://doi.org/10.1080/0305215X.2012.748047

    Article  MathSciNet  Google Scholar 

  38. Ahmadi S, Abdi Sh (2016) Application of the Hybrid Big Bang-Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system. Sol Energy 134:366–374. https://doi.org/10.1016/j.solener.2016.05.019

    Article  Google Scholar 

  39. Kaveh A, Talatahari S (2009) Optimal design of Schwedler and ribbed domes via hybrid Big Bang-Big Crunch algorithm. J Constr Steel Res 66:412–419. https://doi.org/10.1016/j.jcsr.2009.10.013

    Article  Google Scholar 

  40. Alatas B (2011) Uniform Big Bang-Chaotic Big Crunch optimization. Commun Nonlinear Sci Numer Simul 16(9):3696–3703. https://doi.org/10.1016/j.cnsns.2010.12.025

    Article  MATH  Google Scholar 

  41. Jordehi AR (2014) A chaotic-based big bang–big crunch algorithm for solving global optimisation problems. Neural Comput Appl 25(6):1329–1335. https://doi.org/10.1007/s00521-014-1613-1

    Article  Google Scholar 

  42. Genç HM (2013) Big Bang–Big Crunch optimization algorithm with local directional moves. Turkish J Electr Eng Comput Sci 21:1359–1375. https://doi.org/10.3906/elk-1106-46

    Article  Google Scholar 

  43. Bali S, Bansal S, Kamboj A (2015) A novel hybrid multi–objective bb–bc based channel allocation algorithm to reduce FWM crosstalk and its comparative study. Int J Comput Appl 124(12):38–45. https://doi.org/10.5120/ijca2015905702

    Article  Google Scholar 

  44. Luo FL, Ye H (2013) Renewable energy systems: advanced conversion technologies and applications. CRC Press, Boca Raton

    Google Scholar 

  45. Das A, Ferbel T (1994) Introduction to Nuclear and Particle Physics. John Wiley & Sons Inc, New York

    MATH  Google Scholar 

  46. Gavrilyuk A (2013) Hydrogen energy for beginners. CRC Press, Boca Raton

    Book  Google Scholar 

  47. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102. https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

  48. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Zhengzhou University, Technical report

  49. Altun M, Pekcan O (2017) A modified approach to cross entropy method: elitist stepped distribution algorithm. Appl Soft Comput 58:756–769. https://doi.org/10.1016/j.asoc.2017.04.032

    Article  Google Scholar 

  50. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  51. Javidy B, Hatamlou A, Mirjalili S (2015) Ions motion algorithm for solving optimization problems. Appl Soft Comput 32:72–79. https://doi.org/10.1016/j.asoc.2015.03.035

    Article  Google Scholar 

  52. Karaboga D, Basturk B (2007) Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization. LNAI 4529:789–798. https://doi.org/10.1007/978-3-540-72950-1_77

    Article  MATH  Google Scholar 

  53. Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  54. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83. https://doi.org/10.2307/3001968

    Article  Google Scholar 

  55. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229. https://doi.org/10.1115/1.2912596

    Article  Google Scholar 

  56. Litinetski VV, Abramzon BM (1998) Mars—a multistart adaptive random search method for global constrained optimization in engineering applications. Eng Optim 30(2):125–154. https://doi.org/10.1080/03052159808941241

    Article  Google Scholar 

  57. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579. https://doi.org/10.1016/j.amc.2006.11.033

    Article  MathSciNet  MATH  Google Scholar 

  58. Rao SS (2009) Engineering optimization: theory and practice. Wiley, New Jersey

    Book  Google Scholar 

  59. Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y (2008) Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput Methods Appl Mech Eng 197(33-40):3080–3091. https://doi.org/10.1016/j.cma.2008.02.006

    Article  MATH  Google Scholar 

  60. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  61. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  62. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  63. Wang L, Li LP (2009) An effective differential evolution with level comparison for constrained engineering design. Struct Multidiscip Optim 41(6):947–963. https://doi.org/10.1007/s00158-009-0454-5

    Article  Google Scholar 

  64. He Q, Wang L (2007) A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl Math Comput 186(2):1407–1422. https://doi.org/10.1016/j.amc.2006.07.134

    Article  MathSciNet  MATH  Google Scholar 

  65. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  66. Akay B, Karaboğa D (2010) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014. https://doi.org/10.1007/s10845-010-0393-4

    Article  Google Scholar 

  67. Gandomi AH, Yang XS, Alavi AH, Talatahari S (2012) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255. https://doi.org/10.1007/s00521-012-1028-9

    Article  Google Scholar 

  68. Zhang C, Li X, Gao L, Wu Q (2013) An improved electromagnetism-like mechanism algorithm for constrained optimization. Expert Syst Appl 40(14):5621–5634. https://doi.org/10.1016/j.eswa.2013.04.028

    Article  Google Scholar 

  69. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl-Based Syst 75:1–18. https://doi.org/10.1016/j.knosys.2014.07.025

    Article  Google Scholar 

  70. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

  71. Niğdeli SM, Bekdaş G, Yang XS (2015) Application of the flower pollination algorithm in structural engineering. Metaheuristics Optim Civ Eng Model Optim Sci Technol 7:25–42. https://doi.org/10.1007/978-3-319-26245-1_2

    Article  Google Scholar 

  72. Gandomi AH, Yang XS, Alavi AH (2012) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(2):17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  73. Hsu YL, Liu TC (2007) Developing a fuzzy proportional–derivative controller optimization engine for engineering design optimization problems. Eng Optim 39(6):679–700. https://doi.org/10.1080/03052150701252664

    Article  MathSciNet  Google Scholar 

  74. Gold S, Krishnamurty S (1997) Trade-offs in robust engineering design. In: Proceedings of the 1997 ASME design engineering technical conferences, Sacramento, California, pp 14–17

  75. Wang GG (2003) Adaptive response surface method using inherited latin hypercube design points. J Mech Des 125(2):210–220. https://doi.org/10.1115/1.1561044

    Article  Google Scholar 

  76. Thanedar PB, Vanderplaats GN (1995) Survey of discrete variable optimization for structural design. J Struct Eng 121(2):301–306

    Article  Google Scholar 

  77. Dhadwal M, Jung S, Kim C (2014) Advanced particle swarm assisted genetic algorithm for constrained optimization problems. Comput Optim Appl 58:781–806. https://doi.org/10.1007/s10589-014-9637-0

    Article  MathSciNet  MATH  Google Scholar 

  78. Bernardino HS, Barbosa HJC, Lemonge ACC, Fonseca LG (2008) A new hybrid AIS-GA for constrained optimization problems in mechanical engineering. In: Proceedings of the 2008 IEEE congress on evolutionary computation, pp 1455–1462. https://doi.org/10.1109/cec.2008.4630985

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Pekcan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalcin, Y., Pekcan, O. Nuclear Fission–Nuclear Fusion algorithm for global optimization: a modified Big Bang–Big Crunch algorithm. Neural Comput & Applic 32, 2751–2783 (2020). https://doi.org/10.1007/s00521-018-3907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3907-1

Keywords

Navigation