Skip to main content
Log in

Integration of industrial videogrammetry and artificial neural networks for monitoring and modeling the deformation or displacement of structures

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The need to monitor structures permanently and the necessity of performing measurements in a continuous space are of the most important factors which cause some restrictions, such as the rising cost, the dependence on the environment conditions and requirement for high-tech tools for permanent control of displacement and deformation of structures. Videogrammetry, which is used in different fields of industry and manufacturing as a precise and low-cost measurement method, can be utilized in this field. But the use of videogrammetry to control a structure deformation or displacement has four problems including synchronization of cameras in a permanent and long-term monitoring, the need for approximate values of unknown parameters, the necessity for automating the prediction of structure deformation or displacement and the need for high-speed computing. The evaluation of the system designed and implemented in this research shows that using videogrammetry based on the method presented in the research and the integration of videogrammetry and artificial neural networks can solve these problems. The system can be applied to produce the data which are needed for decision support systems to control displacement or deformation of structures intelligently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fraser CS, Brown DC (1986) Industrial photogrammetry: new developments and recent applications. Photogramm Rec 12(68):197–217. doi:10.1111/j.1477-9730.1986.tb00557.x

    Article  Google Scholar 

  2. Luhmann T (2010) Close range photogrammetry for industrial applications. ISPRS J Photogramm Remote Sens 65(6):558–569. doi:10.1016/j.isprsjprs.2010.06.003

    Article  Google Scholar 

  3. Pinto A, Moreira AP, Costa P (2015) WirelessSyncroVision: wireless synchronization for industrial stereoscopic systems. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7398-2

    Google Scholar 

  4. Maropoulos PG, Muelaner JE, Summers MD, Martin OC (2014) A new paradigm in large-scale assembly—research priorities in measurement assisted assembly. Int J Adv Manuf Technol 70(1–4):621–633. doi:10.1007/s00170-013-5283-4

    Article  Google Scholar 

  5. Saadat M, Cretin L, Sim R, Najafi F (2009) Deformation analysis of large aerospace components during assembly. Int J Adv Manuf Technol 41(1–2):145–155. doi:10.1007/s00170-008-1464-y

    Article  Google Scholar 

  6. Xiao K, Zardawi F, van Noort R, Yates J (2014) Developing a 3D colour image reproduction system for additive manufacturing of facial prostheses. Int J Adv Manuf Technol 70(9–12):2043–2049. doi:10.1007/s00170-013-5448-1

    Article  Google Scholar 

  7. Xu Z, Toncich D, Stefani S (1999) Vision-based measurement of three-dimensional geometric workpiece properties. Int J Adv Manuf Technol 15(5):322–331. doi:10.1007/s001700050074

    Article  Google Scholar 

  8. Samper D, Santolaria J, Brosed F, Aguilar J (2013) A stereo-vision system to automate the manufacture of a semitrailer chassis. Int J Adv Manuf Technol 67(9–12):2283–2292. doi:10.1007/s00170-012-4649-3

    Article  Google Scholar 

  9. Iovenitti PG, Mutapcic E, Nagarajah CR (2001) Positioning and orienting a drill axis on a curved surface. Int J Adv Manuf Technol 17(7):484–488. doi:10.1007/s001700170148

    Article  Google Scholar 

  10. Brilakis I, Fathi H, Rashidi A (2011) Progressive 3D reconstruction of infrastructure with videogrammetry. Autom Constr 20(7):884–895. doi:10.1016/j.autcon.2011.03.005

    Article  Google Scholar 

  11. Koelman HJ (2010) Application of a photogrammetry-based system to measure and re-engineer ship hulls and ship parts: an industrial practices-based report. Comput Aided Des 42(8):731–743. doi:10.1016/j.cad.2010.02.005

    Article  Google Scholar 

  12. Tangelder JWH, Ermes P, Vosselman G, Van Den Heuvel FA (2003) CAD-based photogrammetry for reverse engineering of industrial installations. Comput Aided Civil Infrastruct Eng 18(4):264–274. doi:10.1111/1467-8667.00316

    Article  Google Scholar 

  13. De-hai Z, Jin L, Cheng G, Xiao-qiang Z (2010) Digital photogrammetry applying to reverse engineering. In: 2010 Symposium on photonics and optoelectronic (SOPO), 19–21 June 2010, pp 1–5. doi:10.1109/SOPO.2010.5504188

  14. Zhang GP (2001) An investigation of neural networks for linear time-series forecasting. Comput Oper Res 28(12):1183–1202. doi:10.1016/S0305-0548(00)00033-2

    Article  MATH  Google Scholar 

  15. Hoptroff RG (1993) The principles and practice of time series forecasting and business modelling using neural nets. Neural Comput Appl 1(1):59–66. doi:10.1007/BF01411375

    Article  Google Scholar 

  16. Zhang G, Patuwo BE (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14(1):35–62

    Article  Google Scholar 

  17. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366. doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  18. Saxén H (1996) Nonlinear time series analysis by neural networks: a case study. Int J Neural Syst 07(02):195–201. doi:10.1142/S0129065796000166

    Article  Google Scholar 

  19. Azoff E (1993) Reducing error in neural network time series forecasting. Neural Comput Appl 1(4):240–247. doi:10.1007/BF02098741

    Article  Google Scholar 

  20. Adhikari R, Agrawal RK (2014) A linear hybrid methodology for improving accuracy of time series forecasting. Neural Comput Appl 25(2):269–281. doi:10.1007/s00521-013-1480-1

    Article  Google Scholar 

  21. Donate J, Li X, Sánchez G, de Miguel A (2013) Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm. Neural Comput Appl 22(1):11–20. doi:10.1007/s00521-011-0741-0

    Article  Google Scholar 

  22. Adhikari R, Agrawal RK (2014) A combination of artificial neural network and random walk models for financial time series forecasting. Neural Comput Appl 24(6):1441–1449. doi:10.1007/s00521-013-1386-y

    Article  Google Scholar 

  23. Patra A, Das S, Mishra SN, Senapati MR (2015) An adaptive local linear optimized radial basis functional neural network model for financial time series prediction. Neural Comput Appl. doi:10.1007/s00521-015-2039-0

    Google Scholar 

  24. Zhang GP, Berardi VL (2001) Time series forecasting with neural network ensembles: an application for exchange rate prediction. J Oper Res Soc 52(6):652–664

    Article  MATH  Google Scholar 

  25. Kardakos EG, Alexiadis MC, Vagropoulos SI, Simoglou CK, Biskas PN, Bakirtzis AG (2013) Application of time series and artificial neural network models in short-term forecasting of PV power generation. In: 2013 48th International universities’ power engineering conference (UPEC), 2–5 Sept. 2013, pp 1–6. doi:10.1109/UPEC.2013.6714975

  26. Dolenko SA, Orlov YV, Persiantsev IG, Shugai YS (2007) Neural network algorithms for analyzing multidimensional time series for predicting events and their application to study of Sun–Earth relations. Pattern Recognit Image Anal 17(4):584–591. doi:10.1134/S1054661807040189

    Article  Google Scholar 

  27. Qiang L (2000) The application of neural network to the analysis of earthquake precursor chaotic time series. Acta Seimol Sin 13(4):434–439. doi:10.1007/s11589-000-0025-8

    Article  Google Scholar 

  28. Luhmann T (2006) Close range photogrammetry: principles, methods and applications. Whittles, Hull

    Google Scholar 

  29. Shortis MR, Seager JW (2014) A practical target recognition system for close range photogrammetry. Photogramm Rec 29(147):337–355. doi:10.1111/phor.12070

    Article  Google Scholar 

Download references

Acknowledgments

This research is based on data collected with cooperating of Mr. Ali Rezghi. So, I would like to express my sincere gratitude to him for providing the required data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Farnood Ahmadi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farnood Ahmadi, F. Integration of industrial videogrammetry and artificial neural networks for monitoring and modeling the deformation or displacement of structures. Neural Comput & Applic 28, 3709–3716 (2017). https://doi.org/10.1007/s00521-016-2255-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2255-2

Keywords

Navigation