Skip to main content
Log in

Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, meta-heuristic intelligent approaches are developed for handling nonlinear oscillatory problems with stiff and non-stiff conditions. The mathematical modeling of these oscillators is accomplished using feed-forward artificial neural networks (ANNs) in the form of an unsupervised manner. The accuracy as well as efficiency of the model is subject to the tuning of adaptive parameters for ANNs that are highly stochastic in nature. These optimal weights are carried out with swarm intelligence and pattern search methods hybridized with an efficient local search technique based on constraints minimization known as active set algorithm. The proposed schemes are validated on various stiff and non-stiff variants of the oscillator. The significance, applicability and reliability of the proposed scheme are well established based on comparison made with the results of standard numerical solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mickens RE, Oyedeji K (2010) Comments on the general dynamics of the nonlinear oscillator. Mech Syst Signal Process 24:2076–2095

    Article  Google Scholar 

  2. Kovacic I (2011) Forced vibrations of oscillators with a purely nonlinear power-form restoring force. J Sound Vib 330:4313–4327

    Article  Google Scholar 

  3. Balaram B, Narayanan MD, RajendrakumarAli PK (2012) Optimal design of multi-parametric nonlinear systems using a parametric continuation based Genetic Algorithm approach. Nonlinear Dyn 67:2759–2777

    Article  Google Scholar 

  4. Feng J, Zhu W-Q, Liu ZH (2011) Stochastic optimal time-delay control of quasi-integrable Hamiltonian systems. Commun Nonlinear Sci Numer Simulat 16:2978–2984

    Article  MathSciNet  MATH  Google Scholar 

  5. Erneux T, Baer SM, Mandel P (1987) Subharmonic bifurcation and bistability of periodic solutions in a periodically modulated laser. Phys Rev A 35:1165–1171

    Article  Google Scholar 

  6. Kaya M, Higuchi H (2010) Nonlinear elasticity and an 8-Nm working stroke of a single myosin molecules in myofilaments. Science 329(5992):686–689

  7. Storm C, Nelson PC (2003) Theory of high-force DNA stretching and overstretching. Phys Rev E 67:051906

    Article  MathSciNet  Google Scholar 

  8. Hamdan MN, shabaneh NH (1997) On the large amplitude free vibrations of a restained uniform beam carrying an intermediate lumped mass. J Sound Vib 199:711–736

    Article  Google Scholar 

  9. Mickens RE, Jackson DD (1999) oscillation in systems having velocity dependent frequencies. J Sound Vib 223:329–333

    Article  MathSciNet  MATH  Google Scholar 

  10. Beatty J, Mickens RE (2005) A qualitative study of the solutions to the differential equation. J Sound Vib 283:475–477

    Article  MathSciNet  MATH  Google Scholar 

  11. Mickens RE (2006) Investigation of the properties of the period for the nonlinear oscillator. J Sound Vib 292:1031–1035

    Article  MathSciNet  MATH  Google Scholar 

  12. Belendz A, Hernandez A, Belendz T, Neipp C, Marques A (2006) Asymptotic representation of the period of nonlinear oscillator. J Sound Vib 299:406–408

    Google Scholar 

  13. Kalmar T, Erneux T (2008) Approximating a small and large amplitude periodic orbits of the oscillator. J Sound Vib 313:806–811

    Article  Google Scholar 

  14. Kerschen G, Worden K, Vakakis AF, Golinval JC (2006) Past, present and future of nonlinear system identification in structural dynamics. Mech Syst Signal Process 20:505–592

    Article  Google Scholar 

  15. Raja MAZ, Sabir Z, Mahmood N, Alaidarous ES, Khan JA (2014) Stochastic solvers based on variants of genetic algorithms for solving nonlinear equations. Neural Comput Appl. doi:10.1007/s00521-014-1676-z

    Google Scholar 

  16. Anastassi AA (2014) Constructing Runge–Kutta methods with the use of artificial neural networks. Neural Comput Appl 25(1):229–236

    Article  Google Scholar 

  17. Mokeddem D, Khellaf A (2012) Optimal feeding profile for a fuzzy logic controller in a bioreactors using genetic algorithm. Nonlinear Dyn 67:2835–2845

    Article  MathSciNet  Google Scholar 

  18. Chakraverty S, Mall S (2014) Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neural Comput Appl 25(3–4):585–594

    Article  Google Scholar 

  19. Raja MAZ, Qureshi IM, Khan JA (2011) Swarm intelligent optimized neural networks for solving fractional differential equations. Int J Innov Comput Inf Control 7(11):6301–6318

    Google Scholar 

  20. Raja MAZ, Khan JA, Qureshi IM (2010) Heuristic computational approach using swarm intelligence in solving fractional differential equations. GECCO (Companion) 2010:2023–2026

    Google Scholar 

  21. Raja MAZ, Khan JA, Qureshi IM (2011) Swarm intelligence optimized neural network for solving fractional order systems of Bagley-Tervik equation. Eng Intell Syst 1:41–51

    Google Scholar 

  22. Zahoor RMA, Khan JA, Qureshi IM (2009) Evolutionary computation technique for solution of Riccati differential equation of arbitrary order. World Acad Sci Eng Technol 58:303–309

    Google Scholar 

  23. Khan JA, Raja MAZ, Qureshi IM (2011) Novel approach for van der Pol oscillator on the continuous time domain. Chin Phys Lett 28(11):110205

    Article  Google Scholar 

  24. Khan JA, Raja MAZ, Qureshi IM (2011) Hybrid evolutionary computational approach: application to van der Pol oscillator. Int J Phys Sci 6(31):7247–7261

    Google Scholar 

  25. Raja MAZ, Khan JA, Ahmad SI, Qureshi IM Numeriacal treatment of Painleve equation I using neural networks and stochastic solvers. Innovation in Machine-3, Studies in Computational intelligence, book series Springer, vol 442, Sep 2012

  26. Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2012) Solution of the Painlevé equation-I using neural network optimized with swarm intelligence. Comput Intell Neurosci 2012:1–10. ID 721867

  27. Raja MAZ, Khan JA, Behloul D, Haroon T, Siddiqui AM, Samar R (2015) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256. doi:10.1016/j.asoc.2014.10.009

    Article  Google Scholar 

  28. Raja MAZ, Khan JA, Shah SM, Bhahoal D, Samar R (2014) Comparison of three unsupervised neural network models for first Painleve´ Transcendent. Neural Comput Appl. Accepted 30-11-2014. doi:10.1007/s00521-014-1774-y

  29. Khan JA, Raja MAZ, Qureshi IM (2011) Numerical treatment of nonlinear Emden-Fowler equation using stochastic technique. Ann Math Artif Intell 63(2):185–207

    Article  MathSciNet  Google Scholar 

  30. Raja MAZ (2014) Unsupervised neural networks for solving Troesch’s problem. Chin Phys B 23(1):018903

    Article  Google Scholar 

  31. Raja MAZ (2014) Stochastic numerical techniques for solving Troesch’s Problem. Inf Sci 279:860–873. doi:10.1016/j.ins.2014.04.036

    Article  MathSciNet  Google Scholar 

  32. Raja MAZ, Samar R (2014) Numerical Treatment for nonlinear MHD Jeffery-Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing 124:178–193. doi:10.1016/j.neucom.2013.07.013

    Article  Google Scholar 

  33. Raja MAZ, Samar R (2014) Numerical treatment of nonlinear MHD Jeffery-Hamel problems using stochastic algorithms. Comput Fluids 91:28–46

    Article  MathSciNet  Google Scholar 

  34. Raja MAZ (2014) Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Appl Soft Comput 24:806–821. doi:10.1016/j.asoc.2014.08.055

    Article  Google Scholar 

  35. Raja MAZ (2014) Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect Sci 26(3):195–214. doi:10.1080/09540091.2014.907555

    Article  Google Scholar 

  36. Raja MAZ, Ahmad SI (2014) Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neural Comput Appl 24(3–4):549–561. doi:10.1007/s00521-012-1261-2

    Article  Google Scholar 

  37. Raja MAZ, Ahmad SI, Samar R (2013) Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neural Comput Appl 23(7–8):2199–2210. doi:10.1007/s00521-012-1170-4

    Article  Google Scholar 

  38. Raja MAZ, Samar R, Rashidi MM (2014) Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput Appl. Published online 17-06-2014. doi:10.1007/s00521-014-1641-x

  39. Raja MAZ, Ahmad SI, Samar R (2014) Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Comput Appl. Published online 06-07-2014. doi:10.1007/s00521-014-1664-3

  40. Raja MAZ, Khan JA, Haroon T (2014) Stochastic Numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J Chem Inst Taiwan. doi 10.1016/j.jtice.2014.10.018

  41. Raja MAZ, Manzar MA, Samar R, An Efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl Math Model. doi:10.1016/j.apm.2014.11.024

  42. Rarisi Daniel R et al (2003) solving differential equations with unsupervised neural networks. Chem Eng Process 42:715–721

    Article  Google Scholar 

  43. Aarts LP, Van Der Veer P (2001) Neural network method for solving the partial differential equations. Neural Process Lett 14:261–271

    Article  MATH  Google Scholar 

  44. Hornik K, Stichcombr M, White H (1990) Universal approximation of an unknown mapping and its derivatives using multilayer feed forward networks. Neural Netw 3:551–560

    Article  Google Scholar 

  45. Meada AJ, Fernandez AA (1994) The numerical solution of linear ordinary differential equation by feedforward neural network. Math Comput Model 19:1–25

    Article  Google Scholar 

  46. Raja MAZ, Khan JA, Qureshi IM (2011) Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. J Math Probl Eng 2011:1–18

  47. Zhao HM, Chen KZ (2002) Neural network for solving systems of nonlinear equations. Acta Electronica 30:601–604

    Google Scholar 

  48. Khan JA, Raja MAZ, Qureshi IM (2011) Stochastic computational approach for complex non-linear ordinary differential equations. Chin Phys Lett 28(2):020206

    Article  MathSciNet  Google Scholar 

  49. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Perth, Australia, IEEE Service Center, vol. 4. Piscataway, NJ, pp 1942–1948

  50. Lee KC, Jhang JY (2006) Application of particle swarm optimization algorithm to the optimization of unequally spaced antenna arrays. J Electromagn Wave Appl 20:2001–2012

  51. Coello CA, Pulido GT, Lechuga MS (2004) handling multiple objectives with particle swarm optimization. IEEE Trans Evolut Comput 8:256–279

    Article  Google Scholar 

  52. Pan I, Korre A, Das S, Durucan S (2012) Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dyn 70:2445–2461

    Article  MathSciNet  Google Scholar 

  53. Gao Z, Liao X (2012) Rational approximation for fractional-order system by particle swarm optimization. Nonlinear Dyn 67:1387–1395

    Article  MathSciNet  MATH  Google Scholar 

  54. Raja MAZ, Khan JA, Qureshi IM (2010) A new stochastic approach for solution of Riccati differential equation of fractional order. Ann Math Artif Intell 60(3–4):229–250

    Article  MathSciNet  MATH  Google Scholar 

  55. Sun J, Liu X (2013) A novel APSO-aided maximum likelihood identification method for Hammerstein systems. Nonlinear Dyn 73:449–462

    Article  MATH  Google Scholar 

  56. Lee KY, El-Sharkawi MA (2008) Modern heuristic optimization techniques: theory and application to power systems. Wiley, Hoboken

    Book  Google Scholar 

  57. Kennedy J, Eberhart R (2001) Swarm intelligence, 1st edn. Academic press, San Diego

    Google Scholar 

  58. Hsu CH, Tsou CS, Yu FJ (2009) Multicriteria tradeoffs in inventory control using memetic particle swarm optimization. Int J Innov Comput Inf Control 5:3755–3768

    Google Scholar 

  59. Hooke R, Jeeves R (1961) Direct search solution of numerical and statistical problems. J Assoc Comput Mach 8:212–229

    Article  MATH  Google Scholar 

  60. Pelillo M, Torsello A (2006) Payoff-monotonic game dynamics and the maximum clique problem. Neural Comput 18(5):1215–1258

  61. Huang Z et al (2003) Applying SVM in license plate character recognition. J Comput Eng 29(5):192–194

    Google Scholar 

  62. Ghosh A, Chowdhury A, Giri R, Das S, Abraham A (2010) A hybrid evolutionary direct search technique for solving Optimal Control problems. HIS 125-130

  63. Fan LT, Hwang YH, Hwang CL (1970) Applications of modern optimal control theory to environmental control of confined spaces and life support systems. Part 3- optimal control of systems in which straight variables have equally constraints at the final process time, vol 5, no 3–4, pp 125–136

  64. Wang L (2005) Support vector machines: theory and application. Springer, Berlin

    Google Scholar 

  65. Shampine LF, Reichelt MW (1997) The MATLAB ode suite. SIAM J Sci Comput 18:1–22

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J.A., Raja, M.A.Z., Syam, M.I. et al. Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems. Neural Comput & Applic 26, 1763–1780 (2015). https://doi.org/10.1007/s00521-015-1841-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1841-z

Keywords

Navigation