Skip to main content
Log in

A novel APSO-aided maximum likelihood identification method for Hammerstein systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Identification of Hammerstein nonlinear models has received much attention due to its ability to describe a wide variety of nonlinear systems. In this paper the maximum likelihood estimator which was originally derived for linear systems is extended to work for Hammerstein nonlinear systems in colored-noise environment. The maximum likelihood estimate is known to be statistically efficient, but can lead to complex nonlinear multidimensional optimization problem; traditional methods solve this problem at the computational cost of evaluating second derivatives. To overcome these shortcomings, a particle swarm optimization (PSO) aided maximum likelihood identification algorithm (Maximum Likelihood-Particle Swarm Optimization, ML-PSO) is first proposed to integrate PSO’s simplicity in implementation and computation, and its ability to quickly converge to a reasonably good solution. Furthermore, a novel adaptive strategy using the evolution state estimation technique is proposed to improve PSO’s performance (maximum likelihood-adaptive particle swarm optimization, ML-APSO). A simulation example shows that ML-APSO method outperforms ML-PSO and traditional recursive least square method in various noise conditions, and thus proves the effectiveness of the proposed identification scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bai, E.W.: Decoupling the linear and nonlinear parts in Hammerstein model identification. Automatica 40, 671–676 (2007)

    Article  Google Scholar 

  2. Vanbeylen, L., Pintelon, R., Schoukens, J.: Blind maximum likelihood identification of Hammerstein systems. Automatica 44, 3139–3146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ding, F., Liu, X.P., Liu, G.: Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21, 215–238 (2012)

    Article  Google Scholar 

  4. Wang, D.Q., Ding, F.: Extended stochastic gradient identification algorithms for Hammerstein–Wiener ARMAX systems. Comput. Math. Appl. 56, 3157–3164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding, F., Shi, Y., Chen, T.: Auxiliary model based least-square identification methods for Hammerstein output error systems. Syst. Control Lett. 56, 373–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, X., Qian, J.: Modeling, control and optimization of ideal internal thermally coupled distillation columns. Chem. Eng. Technol. 23, 235–241 (2000)

    Article  Google Scholar 

  7. Chen, Y., Liu, X.: Modeling mass transport of propylene polymerization on Ziegler–Natta catalyst. Polymer 46, 9434–9442 (2005)

    Article  Google Scholar 

  8. Wang, D.Q., Ding, F.: Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91, 1182–1189 (2011)

    Article  MATH  Google Scholar 

  9. Li, J., Ding, F., Yang, G.: Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems. Math. Comput. Model. 55, 442–450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhu, Y., Liu, X.: Dynamics and control of high purity heat integrated distillation columns. Ind. Eng. Chem. Res. 44, 8806–8814 (2005)

    Article  Google Scholar 

  11. Ding, F., Shi, Y., Chen, T.: Gradient-based identification methods for Hammerstein nonlinear ARMAX models. Nonlinear Dyn. 45, 31–43 (2005)

    Article  MathSciNet  Google Scholar 

  12. Narendra, K., Gallman, P.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Autom. Control 11, 546–550 (1966)

    Article  Google Scholar 

  13. Vörös, J.: Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Autom. Control 48, 2203–2206 (2003)

    Article  Google Scholar 

  14. Ding, F., Chen, T.: Identification of Hammerstein nonlinear ARMAX systems. Automatica 41, 1479–1489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu, B., Fang, H., Lin, Y., Shi, Y.: Identification of Hammerstein output-error systems with two-segment nonlinearities: algorithm and applications. Control Intell. Syst. 38, 194–201 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Liu, Y., Xiao, Y., Zhao, X.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. Appl. Math. Comput. 215, 1477–1483 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Sheng, J., Ding, R.: Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems. Comput. Math. Appl. 59, 2615–2627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding, F., Liu, G., Liu, X.: Parameter estimation with scarce measurements. Automatica 47, 1646–1655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding, F.: Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Appl. Math. Model. 37, 1694–1704 (2013)

    Article  MathSciNet  Google Scholar 

  20. LL-Duwaish, H., Karim, M.: A new method for the identification of Hammerstein Model. Automatica 33, 1871–1875 (1997)

    Article  Google Scholar 

  21. Lang, Z.: A nonparametric polynomial identification algorithm for the Hammerstein system. IEEE Trans. Autom. Control 42, 1435–1441 (1997)

    Article  MATH  Google Scholar 

  22. Wang, J., Sano, A., Chen, T., Huang, B.: Identification of Hammerstein systems without explicit parameterization of non-linearity. Int. J. Control 82, 937–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, C.H., Fassois, S.D.: Maximum likelihood identification of stochastic Wiener–Hammerstein-type non-linear systems. Mech. Syst. Signal Process. 6, 135–153 (1992)

    Article  Google Scholar 

  24. Ljung, L.: System Identification: Theory for the User. Prentice Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  25. Hagenblad, A., Ljung, L.: Maximum likelihood identification of Wiener models. Automatica 44, 2697–2705 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, S., Hong, X., Harris, C.J.: Particle swarm optimization aided orthogonal forward regression of unified data modeling. IEEE Trans. Evol. Comput. 14, 477–499 (2010)

    Article  Google Scholar 

  27. Konstantinos, T., Grigorios, B., Spiridon, L.: Combining evolutionary and stochastic gradient techniques for system identification. J. Comput. Appl. Math. 2(27), 147–160 (2009)

    Google Scholar 

  28. Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems. Automatica 34, 333–338 (1998)

    Article  MATH  Google Scholar 

  29. Chang, F., Luus, R.: A noniterative method for identification using Hammerstein model. IEEE Trans. Autom. Control 16, 464–468 (1971)

    Article  Google Scholar 

  30. Bai, E.W.: A blind approach to the Hammerstein–Wiener model identification. Automatica 38, 967–979 (2002)

    Article  MATH  Google Scholar 

  31. Astrom, K.J.: Maximum likelihood and prediction error methods. Automatica 16, 551–574 (1980)

    Article  Google Scholar 

  32. Wang, W., Ding, F., Dai, J.: Maximum likelihood least squares identification for systems with autoregressive moving average noise. Appl. Math. Model. 36, 1842–1853 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Chapter  Google Scholar 

  34. Shi, Y., Eberhart, R.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 101–106 (2001)

    Google Scholar 

  35. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  36. Kadirkamanathan, V., Selvarajah, K., Fleming, P.J.: Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evol. Comput. 10, 245–255 (2006)

    Article  Google Scholar 

  37. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85, 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kennedy, J., Mendes, R.: Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms. In: Proceedings of the 2003 IEEE SMC Workshop on Soft Computing in Industrial Applications (SMCia03), Binghamton, New York (2003)

    Google Scholar 

  39. Suganthan, P.N.: Particle swarm optimizer with neighborhood operator. In: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, pp. 1958–1962 (1999)

    Google Scholar 

  40. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8, 240–255 (2004)

    Article  Google Scholar 

  41. Zhan, Z.H., Zhang, J., Li, Y., Chung, H.S.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern., Part B 39, 1362–1381 (2009)

    Article  Google Scholar 

  42. Liu, X., Lu, J.: Least squares based iterative identification for a class of multirate systems. Automatica 46, 549–554 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Joint Funds of NSFC-CNPC of China (Grant U1162130), National High Technology Research and Development Program (863, Grant 2006AA05Z226) and Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists (Grant R4100133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinggao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Liu, X. A novel APSO-aided maximum likelihood identification method for Hammerstein systems. Nonlinear Dyn 73, 449–462 (2013). https://doi.org/10.1007/s11071-013-0800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0800-4

Keywords

Navigation