Skip to main content
Log in

Bifurcation analysis of a two-dimensional simplified Hodgkin–Huxley model exposed to external electric fields

  • ICONIP 2012
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, the dynamical behaviors of a two-dimensional simplified Hodgkin–Huxley (H–H) model exposed to external electric fields are investigated through qualitative analysis and numerical simulation. A necessary and sufficient condition is proposed for the existence of the Hopf bifurcation. Saddle-node bifurcations and canards of the simplified model with the coefficients of different linear forms are also discussed. Finally, the bifurcation curves with the coefficients of different linear forms are shown. The numerical results demonstrate that some linear forms can retain the bifurcation characteristics of the original model, which is of great use to simplify the H–H model for the real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  2. Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    Google Scholar 

  3. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496

    Google Scholar 

  4. Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116:497–506

    Google Scholar 

  5. Keener J, Sneyd J (1998) Mathematical physiology. Springer, New York

    MATH  Google Scholar 

  6. Cronin J (1987) Mathematical aspects of Hodgkin–Huxley neural theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  7. Moehlis J (2006) Canards for a reduction of the Hodgkin–Huxley equations. J Math Biol 52:141–153

    Article  MATH  MathSciNet  Google Scholar 

  8. Wilson H (1999) Spikes decisions and actions: dynamical foundations of neuroscience. Oxford University Press, Oxford

    MATH  Google Scholar 

  9. Calitoiu D, Oommen BJ, Nussbaum D (2008) Spikes annihilation in the Hodgkin–Huxley neuron. Biol Cybern 98:239–257

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang J, Geng JM, Fei XY (2005) Two-parameters Hopf bifurcation in the Hodgkin–Huxley model. Chaos Solitons Fractals 23:973–980

    MATH  MathSciNet  Google Scholar 

  11. Wang J, Chen LQ, Fei XY (2007) Analysis and control of the bifurcation of Hodgkin–Huxley model. Chaos Solitons Fractals 31:247–256

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang J, Chen LQ, Fei XY (2007) Bifurcation control of the Hodgkin–Huxley equations. Chaos Solitons Fractals 33:217–224

    Article  MATH  MathSciNet  Google Scholar 

  13. Qu JY, Wang RB, Du Y (2013) An improved selective attention model considering orientation preferences. Neural Comput Appl 22(2):303–311

    Article  Google Scholar 

  14. Wang H, Yu YG, Zhao R, Wang S (2013) Two-parameter bifurcation in a two-dimensional simplified Hodgkin–Huxley model. Commun Nonlinear Sci Numer Simul 18:184–193

    Article  MATH  MathSciNet  Google Scholar 

  15. Izhikevich EM (2004) Which model to use for cortical spiking neurons?. IEEE Trans Neural Netw 15:1063–1070

    Article  Google Scholar 

  16. Iren V, Natacha G, Frank T, Oxana L (2007) Modeling of inhibition/excitation firing in olfactory bulb through spiking neurons. Neural Comput Appl 16(4-5):355–372

    Article  Google Scholar 

  17. Tomoki K, Kunihiko K (2012) Learning to memorize input–output mapping as bifurcation in neural dynamics: relevance of multiple timescales for synapse changes. Neural Comput Appl 21(4):725–734

    Article  Google Scholar 

  18. Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte-neuron interactions in neurological disorders. J Biol Phys 35:317–336

    Article  Google Scholar 

  19. Garbo AD (2009) Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. J Biol Phys 35:361–382

    Article  Google Scholar 

  20. Hiroshige T, Takako M, Yoshitaka N, Gerard BR, Yoshinobu G, Shozo T (2011) A neural decoding approach to auditory temporal assimilation. Neural Comput Appl 20(7):965–973

    Article  Google Scholar 

  21. Wang H, Yu YG, Wang S, Yu JZ (2013) Hopf bifurcation analysis in a two-dimensional simplified Hodgkin–Huxley model. Appl Math Comput (submitted)

  22. Wang H, Yu YG, Wang M, Zhao R (2010) The dynamical analysis of a two-dimensional simplified Hodgkin–Huxley model. IEEE ICNC 6:814–818

    Google Scholar 

  23. Callot JL, Diener F, Diener M (1978) Le problème de la “chasse au canard”. C R Acad Sci Paris (Sèr. I) 286:1059–1061

    MATH  MathSciNet  Google Scholar 

  24. Benoit E, Callot JL, Diener F, Diener M (1981) Chasse au canard. Collect Math 32:37–119

    MATH  MathSciNet  Google Scholar 

  25. Guckenheimer J, Hoffman K, Weckesser W (2000) Numerical computation of canards. Int J Bif Chaos 10:2669–2687

    Article  MATH  MathSciNet  Google Scholar 

  26. Krupa M, Szmolyan P (2001) Relaxation oscillation and canard explosion. J Differ Equ 174:312–368

    Article  MATH  MathSciNet  Google Scholar 

  27. Szmolyan P, Wechselberger M (2001) Canards in R 3. J Differ Equ 177:419–453

    Article  MATH  MathSciNet  Google Scholar 

  28. Izhikevich EM (2010) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China under Grant No. 10901014 and No. 61075102, the Science Foundation of Beijing Jiaotong University under Grant 2011JBM130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongguang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Yu, Y., Wang, S. et al. Bifurcation analysis of a two-dimensional simplified Hodgkin–Huxley model exposed to external electric fields. Neural Comput & Applic 24, 37–44 (2014). https://doi.org/10.1007/s00521-013-1462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1462-3

Keywords

Navigation