Skip to main content

Advertisement

Log in

Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

A common side effect of chemotherapy treatment is diarrhoea. Unfortunately, the underlying mechanisms of chemotherapy-induced diarrhoea (CD) are poorly understood. We aimed to determine if faecal microbes of CD patients were displaced, if faecal calprotectin increased during CD and if there were alterations in circulating matrix metalloproteinases, nuclear factor kappa B (NF-κB), IL-1β and TNF.

Patients and methods

Twenty-six cancer patients receiving chemotherapy were enrolled and requested to provide stool samples and blood samples at various times during their chemotherapy cycle. Stool samples were analysed using conventional culture techniques and qRT-PCR. ELISA kits determined faecal calprotectin levels, levels of circulating matrix metalloproteinases and circulating NF-κB, IL-1β and TNF.

Results

The majority of patients with CD showed decreases in Lactobacillus spp., Bifidobacterium spp., Bacteroides spp. and Enterococcus spp. Increases were observed in Escherichia coli and Staphylococcus spp. Methanogenic archaea were also quantified, with all patients except one showing a decrease. Faecal calprotectin levels were increased in 81.25 % of patients with CD. Circulating MMP-3 and MMP-9 significantly increased following chemotherapy. Circulating levels of NF-κB, IL-1β and TNF were increased following chemotherapy, although this did not reach significance.

Conclusions

We demonstrated that CD is associated with marked changes in intestinal microflora, methanogenic archaea, matrix metalloproteinase and serum levels of NF-κB, IL-1β and TNF. These changes may result in diminished bacterial functions within the gut, altering gut function and initiating intestinal damage, resulting in the onset of diarrhoea. More importantly, these changes may provide clinicians with a possible new target for biomarkers of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Keefe DM, Schubert MM, Elting LS, Sonis ST, Epstein JB, Raber-Durlacher JE, Migliorati CA, McGuire DB, Hutchins RD, Peterson DE (2007) Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer 109(5):820–831

    Article  CAS  PubMed  Google Scholar 

  2. Gibson RJ, Bowen JM, Cummins AG, Keefe DM (2005) Relationship between dose of methotrexate, apoptosis, p53/p21 expression and intestinal crypt proliferation in the rat. Clin Exp Med 4(4):188–195

    Article  CAS  PubMed  Google Scholar 

  3. Logan RM, Gibson RJ, Bowen JM, Stringer AM, Sonis ST, Keefe DM (2008) Characterisation of mucosal changes in the alimentary tract following administration of irinotecan: implications for the pathobiology of mucositis. Cancer Chemother Pharmacol 62(1):33–41

    Article  CAS  PubMed  Google Scholar 

  4. Bowen JM, Gibson RJ, Cummins AG, Tyskin A, Keefe DM (2007) Irinotecan changes gene expression in the small intestine of the rat with breast cancer. Cancer Chemother Pharmacol 59(3):337–348

    Article  CAS  PubMed  Google Scholar 

  5. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    Article  CAS  PubMed  Google Scholar 

  6. Gibson RJ, Bowen JM, Inglis MR, Cummins AG, Keefe DM (2003) Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. J Gastroenterol Hepatol 18(9):1095–1100

    Article  CAS  PubMed  Google Scholar 

  7. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Burns J, Keefe DM (2007) Chemotherapy-induced diarrhea is associated with changes in the luminal environment in the DA rat. Exp Biol Med (Maywood) 232(1):96–106

    CAS  Google Scholar 

  8. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J, Keefe DM (2009) Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med (Maywood) 234(4):430–441

    Article  CAS  Google Scholar 

  9. Al-Dasooqi N, Gibson RJ, Bowen JM, Logan RM, Stringer AM, Keefe DM (2010) Matrix metalloproteinases are possible mediators for the development of alimentary tract mucositis in the dark agouti rat. Exp Biol Med (Maywood) 235(10):1244–1256

    Article  CAS  Google Scholar 

  10. Gibson RJ, Keefe DM (2006) Cancer chemotherapy-induced diarrhoea and constipation: mechanisms of damage and prevention strategies. Support Care Cancer 14(9):890–900

    Article  PubMed  Google Scholar 

  11. Elting LS, Cooksley C, Chambers M, Cantor SB, Manzullo E, Rubenstein EB (2003) The burdens of cancer therapy. Clinical and economic outcomes of chemotherapy-induced mucositis. Cancer 98(7):1531–1539

    Article  PubMed  Google Scholar 

  12. Savarese DM, Hsieh C, Stewart FM (1997) Clinical impact of chemotherapy dose escalation in patients with hematologic malignancies and solid tumors. J Clin Oncol 15(8):2981–2995

    CAS  PubMed  Google Scholar 

  13. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100(9 Suppl):1995–2025

    Article  PubMed  Google Scholar 

  14. Costa F, Mumolo MG, Ceccarelli L, Bellini M, Romano MR, Sterpi C, Ricchiuti A, Marchi S, Bottai M (2005) Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn's disease. Gut 54(3):364–368

    Article  CAS  PubMed  Google Scholar 

  15. Foell D, Wittkowski H, Ren Z, Turton J, Pang G, Daebritz J, Ehrchen J, Heidemann J, Borody T, Roth J, Clancy R (2008) Phagocyte-specific S100 proteins are released from affected mucosa and promote immune responses during inflammatory bowel disease. J Pathol 216(2):183–192

    Article  CAS  PubMed  Google Scholar 

  16. Roseth AG (2003) Determination of faecal calprotectin, a novel marker of organic gastrointestinal disorders. Dig Liver Dis 35(9):607–609

    Article  CAS  PubMed  Google Scholar 

  17. Wedlake L, McGough C, Hackett C, Thomas K, Blake P, Harrington K, Tait D, Khoo V, Dearnaley D, Andreyev HJ (2008) Can biological markers act as non-invasive, sensitive indicators of radiation-induced effects in the gastrointestinal mucosa? Aliment Pharmacol Ther 27(10):980–987

    Article  CAS  PubMed  Google Scholar 

  18. van Vliet MJ, Tissing WJ, Rings EH, Koetse HA, Stellaard F, Kamps WA, de Bont ES (2009) Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatr Blood Cancer 53(7):1188–1194

    Article  PubMed  Google Scholar 

  19. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  PubMed  Google Scholar 

  20. Stankovic S, Konjevic G, Gopcevic K, Jovic V, Inic M, Jurisic V (2010) Activity of MMP-2 and MMP-9 in sera of breast cancer patients. Pathol Res Pract 206(4):241–247

    Article  CAS  PubMed  Google Scholar 

  21. Edwards KJ, Kaufmann ME, Saunders NA (2001) Rapid and accurate identification of coagulase-negative staphylococci by real-time PCR. J Clin Microbiol 39(9):3047–3051

    Article  CAS  PubMed  Google Scholar 

  22. Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G (2006) Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72(6):4214–4224

    Article  CAS  PubMed  Google Scholar 

  23. Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70(12):7220–7228

    Article  CAS  PubMed  Google Scholar 

  24. Penders J, Vink C, Driessen C, London N, Thijs C, Stobberingh EE (2005) Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 243(1):141–147

    Article  CAS  PubMed  Google Scholar 

  25. Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97(6):1166–1177

    Article  CAS  PubMed  Google Scholar 

  26. Loitsch SM, Shastri Y, Stein J (2008) Stool test for colorectal cancer screening—it's time to move! Clin Lab 54(11–12):473–484

    CAS  PubMed  Google Scholar 

  27. Stringer AM, Gibson RJ, Bowen JM, Logan RM, Yeoh AS, Keefe DM (2007) Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment. J Support Oncol 5(6):259–267

    CAS  PubMed  Google Scholar 

  28. Lutgens LC, Blijlevens NM, Deutz NE, Donnelly JP, Lambin P, de Pauw BE (2005) Monitoring myeloablative therapy-induced small bowel toxicity by serum citrulline concentration: a comparison with sugar permeability tests. Cancer 103(1):191–199

    Article  PubMed  Google Scholar 

  29. Logan RM, Stringer AM, Bowen JM, Yeoh AS, Gibson RJ, Sonis ST, Keefe DM (2007) The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathobiology, animal models and cytotoxic drugs. Cancer Treat Rev 33(5):448–460

    Article  CAS  PubMed  Google Scholar 

  30. Heller F, Duchmann R (2003) Intestinal flora and mucosal immune responses. Int J Med Microbiol 293(1):77–86

    Article  CAS  PubMed  Google Scholar 

  31. Smith NF, Figg WD, Sparreboom A (2006) Pharmacogenetics of irinotecan metabolism and transport: an update. Toxicol In Vitro 20(2):163–175

    Article  CAS  PubMed  Google Scholar 

  32. Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20(4):593–621

    Article  CAS  PubMed  Google Scholar 

  33. Neish AS (2002) The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes Infect 4(3):309–317

    Article  PubMed  Google Scholar 

  34. Cassel SL, Sutterwala FS, Flavell RA (2008) The tiny conductor: immune regulation via commensal organisms. Cell Host Microbe 3(6):340–341

    Article  CAS  PubMed  Google Scholar 

  35. McCartney AL, Wenzhi W, Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl Environ Microbiol 62(12):4608–4613

    CAS  PubMed  Google Scholar 

  36. Masco L, Van Hoorde K, De Brandt E, Swings J, Huys G (2006) Antimicrobial sensitivity of Bifidobacterium strains from humans, animals and probiotic products. J Antimicrob Chemother 58:85–94

    Article  CAS  PubMed  Google Scholar 

  37. Gibson GR, Cummings JH, Macfarlane GT (1988) Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Bacteriol 65(3):241–247

    Article  CAS  PubMed  Google Scholar 

  38. Pimentel M, Kong Y, Park S (2004) BS subjects with methane on lactulose breath test have lower postprandial serotonin levels than subjects with hydrogen. Dig Dis Sci 49(1):84–87

    Article  CAS  PubMed  Google Scholar 

  39. Scanlan PD, Shanahan F, Marchesi JR (2008) Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol 8:79

    Article  PubMed  Google Scholar 

  40. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105(43):16767–16772

    Article  CAS  PubMed  Google Scholar 

  41. Kumar A, Wu H, Collier-Hyams LS, Hansen JM, Li T, Yamoah K, Pan ZQ, Jones DP, Neish AS (2007) Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J 26(21):4457–4466

    Article  CAS  PubMed  Google Scholar 

  42. Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4(4):277–284

    Article  CAS  PubMed  Google Scholar 

  43. Al-Dasooqi N, Gibson RJ, Bowen JM, Keefe DM (2009) Matrix metalloproteinases: key regulators in the pathogenesis of chemotherapy-induced mucositis? Cancer Chemother Pharmacol 64(1):1–9

    Article  CAS  PubMed  Google Scholar 

  44. Gibson RJ, Bowen JM (2011) Biomarkers of regimen-related mucosal injury. Cancer Treat Rev 37(6):487–493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by a Cure Cancer/Cancer Australia Research Grant awarded to Dr Rachel Gibson; Dr Andrea Stringer is the recipient of an NHMRC Post-Doctoral Training Fellowship; Dr Noor Al-Dasooqi is the recipient of a Clinical Centre of Research Excellence Post-Doctoral Fellowship; Dr Joanne Bowen is the recipient of an NHMRC Post-Doctoral Training Fellowship; and Professor Dorothy Keefe is the Professor of Cancer Medicine.

Conflict of interest

None of the authors listed on this manuscript have any financial relationship with the funding bodies that provided money for this research. Further, all authors have full control of all primary data and we consent to allowing the journal to review any/all data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel J. Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stringer, A.M., Al-Dasooqi, N., Bowen, J.M. et al. Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases. Support Care Cancer 21, 1843–1852 (2013). https://doi.org/10.1007/s00520-013-1741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-013-1741-7

Keywords

Navigation